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Abstract

Artificial immune network algorithm (AINA) combined with position

tracking control method is used for multi-robot formation path

planning. The proposed algorithm avoids obstacles and recovers

formation for follower robot after passing around obstacles. Different

methods are adopted to calculate the steering direction and the

linear velocity of the follower robot. Steering direction of the

follower robot is computed with AINA. AINA has abilities of self-

recognition and diversity, and solves the problems of local minima

and immature convergence. The optimal steering direction selected

with AINA quickly tends towards the steering direction of leader

robot, and successfully avoids obstacles. The linear velocity of

follower robot is computed with position tracking control method.

It is computed based on the state of leader robot, current position

of follower robot, and position of virtual robot. It guarantees that

the position errors of follower robot quickly converge to zeros. The

asymptotic stability of the entire formation system is proven with

Lyapunov theory. Numerous experiments validate that the proposed

algorithm successfully avoids obstacles and quickly tracks the leader

robot for follower robot.
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1. Introduction

Formation control [1]–[3] is a typical problem for multi-
robot systems. Multi-robot formation is defined as the
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coordination of robots in a group to get into and to main-
tain a formation with a certain shape, and it should adapt
to the constraints of environments. The main difficulty in
multi-robot formation is how to maintain a pose for each
robot depending on the poses of other robots in order to
reach a desired goal.

Leader–follower method [4]–[6] is widely used for
multi-robot formation. Follower robots track the leader
robot with the desired distance separation and bearing
angle. Stable tracking control method is widely used for
the follower robot tracking the leader robot. The aim
of stable tracking controller is to have the follower robot
follow a reference trajectory and to have the tracking error
converge to zero.

Yang et al. [7] maintained the formation using the
error tracking system model which was derived based on
the-off-axis point of the follower tracking the-off-axis point
on the virtual robot. The zero dynamics stability of the
system is guaranteed with the constraint of the initial
orientation. Chetty et al. [8] proposed a closed-loop
tracking controller and utilized the behaviour-based reac-
tive controller to form the formation and navigate robots.
The exchange of leadership is incorporated in the system
to avoid obstacles in the follower path, but it raises the
deadlocks between the robots. Dai and Lee [9] proposed
a leader-waypoint-follower formation controller based on
relative motion states of mobile robots. Stable tracking
control method combines receding horizon (RH) tracking
control method to form and maintain the formation. But,
the combined algorithm cannot achieve formation with
obstacle avoidance.

Formation with obstacle avoidance for follower robot
is a challenge for multi-robot formation systems. Follower
robot cannot navigate itself if detecting obstacles, because
follower robot needs not only to avoid obstacles, but also
to recover the formation after passing around obstacles.

Yang et al. [10] proposed two control algorithms based
on suboptimal model predictive control for formation con-
trol and obstacle avoidance. Zhang et al. [11] utilized
artificial potential field algorithm to avoid obstacles for
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leader–follower formation in unknown environments.
Gomez et al. [12] used the Fast Marching Square method
with no local minima problem for leader–follower forma-
tion with obstacle avoidance. Liu et al. [13] developed
an improved rapidly exploring random tree to plan the
path for each robot and developed a dynamic priority
strategy to solve the conflicts caused by orders of robots
in forming the formation. Dai and Lee [14] proposed a
geometric obstacle avoidance control method to guarantee
that the robot avoided the static and dynamic obstacles
using onboard sensors.

Artificial immune algorithm with abilities of self-
recognition, adaptation, and self-learning is widely used
for multi-robot path planning. Luh and Liu [15] proposed
a reactive immune network for mobile robot navigation in
unknown environments. Adaptive virtual target method
is integrated to solve the problem of local minima. But it
has an immature convergence problem. Deng et al. [16]
proposed a poly-clonal-based artificial immune network al-
gorithm (AINA) for path planning with obstacle avoidance
in complex environments. Immunity poly-clonal algorithm
is integrated to solve the problems of immature conver-
gence and local minima. Deng et al. [17] proposed an
improved poly-clonal artificial immune algorithm for multi-
robot formation with obstacle avoidance. Leader-change
is utilized for follower robot avoiding obstacles. Follower
robot reaches the desired virtual position and leader robot
reaches the goal with improved poly-clonal artificial im-
mune algorithm. Deng et al. [18] proposed a dynamic for-
mation path planning algorithm combining leader–follower
method and improved poly-clonal artificial immune algo-
rithm. Formation-change and leader-change are used for
obstacle avoidance. But in [17], [18], leader robot needs to
wait for the follower robot forming the formation.

Contributions of this paper lie in the following perspec-
tives. (1) The proposed algorithm combining AINA and
position tracking control method is used for multi-robot
formation path planning with obstacle avoidance. To sim-
plify the problem, we consider from different views and
adopt different methods to calculate the steering direction
and the linear velocity of the follower robot. (2) Steering
direction of the follower robot is calculated with AINA
which solves the problems of local minima and immature
convergence. It is influenced by the steering direction of
leader robot, the azimuth of virtual robot, and distance
from obstacle. The optimal steering direction quickly
tracks the steering direction of leader robot, and success-
fully avoids obstacles. (3) Linear velocity of the follower
robot is calculated with position tracking control method
without the constraints of angular velocity and the ini-
tial orientation. It guarantees the follower robot tracking
leader robot forming the formation quickly. Lyapunov
theory is used to prove the system stability.

The remainder of the paper is organized as follows.
Section 2 describes the formation model. The computation
of steering direction with AINA is discussed in Section 3.
Section 4 presents the computation of linear velocity for
follower robot with position tracking control method. Sec-
tion 5 describes the experimental results along with some
discussions. Section 6 describes several experiments in

Figure 1. Leader–follower formation model.

MobileSim simulator. Finally, Section 7 concludes the
paper.

2. Formation Model

The posture of each robot is described in terms of
[x y θ]T , where x, y represent the x and y coordinates,
and θ represents the orientation of robot. The kinematics
model of a mobile robot is:

⎡
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ẏ
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Where v is the linear velocity and ω is the angular velocity
of the robot.

The model of leader–follower formation system is
shown in Fig. 1. Postures of the leader robot Ri, the fol-
lower robot Rj , and the virtual robot of follower robot Rv

are described in terms of [xo yo θo]
T , o= i, j, v. Ld, ϕd

represent the desired separation distance and bearing an-
gle between Ri and Rv. Lij , ϕij represent the actual
separation distance and bearing angle between Ri and Rj .

Positions of the virtual robot and the follower robot
are calculated based on Fig. 1:
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In this paper, leader robot reaches the goal with obsta-
cle avoidance and follower robot quickly tracks the leader
robot with obstacle avoidance. Steering direction of fol-
lower robot is computed with AINA and the linear velocity
of follower robot is computed with position tracking control
method.
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3. Artificial Immune Network Algorithm

Artificial immune algorithm increases the diversity of anti-
bodies, and solves the problems of immature convergence
and local minima [19]. The steering direction of follower
robot is computed with AINA. Follower robot with the
optimal steering direction moves towards virtual robot and
avoids obstacles. Meanwhile, leader robot utilizes AINA
for path planning with obstacle avoidance. The adja-
cent robot within the detection radius is considered as an
obstacle.

3.1 Artificial Immune Network Algorithm for
Follower Robot

AINA defines an antigen and antibody based on the en-
vironmental information and postures of robots. Based
on the interaction between antigen and antibody and the
interaction between antibodies, AINA selects the antibody
with the highest concentration as the final antibody; i.e.,
based on the interaction between robot and environment,
AINA selects the steering direction with the highest possi-
ble as the final steering direction.

Antigen set of the follower robot detected by sensors
(sonars) mainly provides environmental information. It
includes the steering direction of leader robot θi, the az-
imuth of virtual robot θgv, the distance between obstacle
and f -th sensor of follower robot df , and the azimuth of
f -th sensor θSf

. Antibody represents the steering direc-
tion of follower robot. Antibody set Ab is defined based
on Abs ≡ θs =2π(s− 1)/NAb, s=1, 2, . . . , NAb, where Abs
represents the s-th antibody, NAb represents the number
of antibodies, and θs represents the s-th possible steering
direction (s-th antibody).

The concentration of each antibody is calculated based
on (4) and (5) [15]–[17]:

dAs(t)

dt
=

(
NAb∑
s1=1

cos(θs−θs1) as1(t)+ms − ks

)
as(t) (4)

as(t)=
1

1+ exp(0.5−As(t))
(5)

where s, s1 =1, 2, . . . , NAb represents subscripts to distin-
guish the antibody types, as represents the concentration
of s-th antibody, dAs/dt denotes the rate of change of
concentration; (4) is composed of three terms. The first
term indicates the stimulative-suppressive affinity between
antibodies. The second term depicts the stimulus from
antigen, and ms represents the affinity between antigen
and s-th antibody. The final term depicts the natural
extinction term which indicates the dissipation tendency
in the absence of any interaction, and ks represents the
natural death coefficient, ks =0.5, (5) depicts a squashing
function to ensure the stability of the concentration.

ms for the follower robot is calculated based on its
antigen set; ms is calculated with (6):

ms = τ1Fgoal1 + τ2Fgoal2 + τ3Fobs (6)

where τ1, τ2, τ3 are positive constants, and τ1+τ2+τ3=1.0.
Fgoal1 represents the attraction of s-th antibody from
leader robot, Fgoal2 represents the attraction of s-th anti-
body from virtual robot, and Fobs represents the repulsion
of s-th antibody from obstacles.

Fgoal1 , Fgoal2 , Fobs are calculated with (7)–(9):

Fgoal1 =
1.0+ cos(θs − θi)

2.0
(7)

Fgoal2 =
1.0+ cos(θs − θgv)

2.0
(8)

Fobs =

NS∑
f =1

expNAb ·df ·
1.0+ cos

(
θs − θSf

)
2.0

(9)

where s = 1, 2, . . . , NAb, 0≤Fgoal1 ≤ 1, 0≤Fgoal2 ≤ 1, NS

is the number of sensors, df represents the normalized
distance between obstacle and f -th sensor.

Based on ms, the concentration of each antibody can
be calculated. To solve the local minima problem and
immature convergence problem, concentration of each an-
tibody needs to be recalculated based on Algorithm 1 [17].

Algorithm 1. The optimal antibody selection.

Require: Concentration of each antibody
Ensure: The optimal antibody

Clonal operator
Concentration is divided into qc same concentrations
(initial population), and qc is calculated based on the
affinity between antigen and antibody.

Crossover operator
It chooses an intersection from two antibodies and
exchanges one or some components of two antibodies.

Mutation operator
It changes some genes in the population and the
exchange negates some genetic value, i.e., 0→1 or
1→0.

Selection operator
The antibody with the highest concentration is
selected as the optimal antibody.

Algorithm 1 adopts four operators to select the optimal
antibody. It utilizes crossover operator to exchange infor-
mation between antibodies and utilizes mutation operator
to increase the diversity of antibody. Algorithm 1 increases
the diversity of antibody and overcomes the problems of
local minima and immature convergence.

The antibody with the highest concentration is se-
lected as the optimal antibody. The optimal antibody
corresponds to a steering direction of follower robot. Fol-
lower robot moves with the steering direction which quickly
tends towards the steering direction of leader robot and
successfully avoids obstacles.
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3.2 Artificial Immune Network Algorithm for
Leader Robot

AINA is used for the leader robot path planning with
obstacle avoidance. In the path planning, linear velocity of
the leader robot is a constant.

Antigen set of leader robot detected by sensors includes
the azimuth of goal θg, the distance between obstacle and
f -th sensor of leader robot df , and the azimuth of sensor
θSf

. Antibody represents the steering direction of leader
robot. The concentration of each antibody is computed
with (4) and (5).

The affinity between antigen and s-th antibody ms for
leader robot is computed with (10):

ms = μ1Fgoal + μ2Fobs (10)

where μ1, μ2 are positive constants, and μ1 +μ2 =1.0.
Fgoal represents the attraction of s-th antibody from goal,
and Fgoal =(1.0+ cos(θs − θg))/2.0, where 0 ≤ Fgoal ≤ 1.
Fobs calculated with (9) represents the repulsion of s-th
antibody from obstacle.

To solve the problems of local minima and immature
convergence, concentration of each antibody is recalcu-
lated by Algorithm 1. The antibody with the highest
concentration is selected as the optimal antibody, and its
corresponding steering direction acts on leader robot.

Steering direction of the follower robot is calculated
with AINA. Follower robot with the optimal steering direc-
tion quickly tends towards the steering direction of leader
robot, and successfully avoids obstacles. Moreover, leader
robot plans for the path with obstacle avoidance using
AINA.

4. Position Tracking Control Method

Position tracking control method calculates the linear ve-
locity of follower robot vj .

4.1 Tracking Algorithm

The linear velocity of follower robot is calculated with
position tracking algorithm. Position error between the
actual position and virtual position of follower robot is
calculated based on (11):

E =

⎡
⎣ ex

ey

⎤
⎦=

⎡
⎣ cos θj sin θj

−sin θj cos θj

⎤
⎦
⎡
⎣ xv −xj

yv − yj

⎤
⎦ (11)

The derivative matrix Ė can be derived as (12):

Ė =

⎡
⎣ ėx

ėy

⎤
⎦=

⎡
⎣ cos(θi − θj)

−cos(θi − θj)

⎤
⎦vi +

⎡
⎣−1

1

⎤
⎦vj (12)

Based on the position error between actual position and
virtual position of follower robot, the linear velocity of
follower robot is considered as (13):

vj = vi cos(θi − θj) +K1ex −K2ey (13)

where K1, K2 are positive constants. vj is bounded for all

t, and vj ≤ min
{
Vmax,

(√
(xv − xj)2 + (yv − yj)2

)
/t
}
.

4.2 Stability Analysis

Lyapunov theory proves that the tracking system with
linear velocity of follower robot (13) is asymptotically
stable and its asymptotically stable equilibrium point is
E=0.

Proposition 1. Assuming that the linear velocity of
follower robot is calculated with (13), vi > 0, ex ∈ R, ey ∈
R, then as t → ∞, E=0 is an asymptotically stable
equilibrium point.

Proof: Lyapunov function is selected as V (E)=
0.5K1e

2
x +0.5K2e

2
y, where V (E) ≥ 0, and V (E)= 0 if and

only if ex =0, ey =0. K1 and K2 are positive constants.
The derivative of Lyapunov function is given by

V̇ (E)=K1exėx +K2ey ėy.
Substituting (11)–(13) into the derivative of Lyapunov

function V̇ (E) gets V̇ (E)=K1ex (cos(θi−θj)vi − vj) +

K2ey (−cos(θi − θj)vi + vj) =−(K1ex −K2ey)
2 ≤ 0.

So the tracking system under the control input (13) is
asymptotically stable.

Based on the Barbalat’s lemma [9], [20], V (E)=
0.5K1e

2
x +0.5K2e

2
y ≥ 0, it has a lower bound, V̇ (E)=

−(K1ex −K2ey)
2 ≤ 0 is a negative definite function and it

is uniformly continuous about time t, so limt→∞ V̇ (E)= 0,
i.e., limt→∞ − (K1ex −K2ey)

2 =0, so limt→∞ ex =0,
limt→∞ ey =0. �

So the proposed linear velocity for follower robot guar-
antees the stability of tracking system and its asymptoti-
cally stable equilibrium point is E=0.

Steering direction of follower robot is calculated with
AINA, and the linear velocity of follower robot is calculated
with position tracking control method. The combination
algorithm ensures that follower robot quickly follows the
leader robot and successfully avoids obstacles.

5. Experiments and Discussions

To validate the proposed algorithm, several simulations
are performed with Matlab. Each robot is regarded as
a sphere, and it moves towards an arbitrary direction in
[0, 2π]. Leader robot’s velocity is specified as vi =0.1m/s.
In this paper τ1 =0.4, τ2 =0.5, τ3 =0.1, μ1 =μ2 =0.5,
Vmax =0.5m/s, K1 =0.3 s−1, and K2 =0.08 s−1.

5.1 Formation Switching

The simulation is utilized to validate that the proposed
algorithm successfully achieves formation switching. The
comparison with the stable tracking control method com-
bining with RH tracking control method [9] validates the
superiority of the proposed algorithm.

Figure 2(a) shows the formation path planning tra-
jectories where three robots switch from an equilateral
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Figure 2. Formation switching with the proposed algorithm: (a) trajectories; (b) state errors of follower 1; and (c) state errors
of follower 2.

Table 1
Comparison of Error Convergence Times with Different

Algorithms

The Proposed Error Convergence Time (s)

Algorithm Follower robot 1 x y θ

1.6 1.4 1.5

Follower robot 2 x y θ

1.8 1.7 1.7

Algorithm in [9] Error Convergence Time (s)

Follower robot 1 x y θ

5.4 4.5 4.5

Follower robot 2 x y θ

1.5 1.5 1.5

triangle to a line. Initial positions of leader robot,
follower robots 1 and 2 are specified as (0.5, 1.5)m,
((0.5−√

0.75), 2) m, and ((0.5−√
0.75), 1) m. The desired

distance and desired bearing angle between two robots are
Ld =0.4m and ϕd =0, respectively.

Figure 2(b) and 2(c) show the state errors of two fol-
lower robots in the process of formation switching. We note
that follower’s state errors converge to zeros correctly and
efficiently.

State error convergence times of two follower robots
with different algorithms are shown in Table 1. The
table explains that the convergence time with the proposed
algorithm is less than the algorithm in [9]. Follower robot
2 has the resultant force from virtual robot and leader
robot in opening environment and it is far away from
leader robot, the attraction from leader robot is smaller
than follower robot 1, so its convergence time is longer
than follower robot 1. Meanwhile, stable state errors
of two follower robots achieve 10−5m in the multi-robot
formation path planning.

With the proposed algorithm, multi-robot systems
quickly form the desired formation and state errors of the
system correctly converge to zeros. Its performance is
better than the method in [9].

5.2 Formation with Obstacle Avoidance

The simulation is used to validate that the proposed forma-
tion path planning algorithm successfully forms the desired
formation with obstacle avoidance. The comparison with
[18] validates effectiveness of the proposed algorithm.

Figure 3 shows several results of formation path plan-
ning with obstacle avoidance. Initial positions of leader
robot, and two follower robots are specified as (4,6)m,
(1,5)m, and (10,2)m. The position of the goal is speci-
fied as (15,15)m. Positions of obstacles are specified as
(8,2)m and (9,10)m. Size of the obstacle is specified as
0.5m× 0.5m. The desired formation shape is an equilat-
eral triangle, and the desired distance is Ld =3 m.

Figure 3(a) indicates the formation path planning tra-
jectories with obstacle avoidance. Obstacles are on trajec-
tories of follower robot 2 and leader robot. We note that
follower robot 2 successfully avoids the obstacle and tracks
leader robot with the desired distance and angle.

Figure 3(b)–3(e) indicate the position errors of two
follower robots in the process of formation path planning
with the proposed algorithm and the algorithm in [18].
Figure 3(f) indicates the distances between robots and
obstacles. We note that robots successfully avoid obstacles
in the formation path planning.

Table 2 shows the position error convergence times of
two follower robots with different algorithms.

In Figure 3(b)–3(e) and Table 2, we note that x errors
and y errors convergence times with the proposed algorithm
are much smaller than the algorithm in [18]. With the
algorithm in [18], the system changes the formation from a
triangle to a line, and position errors of two follower robots
do not completely converge to zeros when the leader robot
encounters the obstacle. The proposed algorithm does not
need to change formation when robots encounter obstacles,
and it can preferably keep and form formation. With
the proposed algorithm, follower robot 2 quickly forms
the formation and avoids the obstacle, and two follower
robots successfully keep the formation when the leader
robot avoids the obstacle.

With the proposed algorithm, multi-robot systems
successfully avoid obstacles with the desired formation,
and follower robots quickly track leader robot with obstacle
avoidance.
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Figure 3. Formation path planning with obstacle avoidance using different algorithms: (a) trajectories; (b) x errors of
follower 1; (c) y errors of follower 1; (d) x errors of follower 2; (e) y errors of follower 2; and (f) distances between robots and
obstacle.

Table 2
Comparison of Error Convergence Times with Different

Algorithms

The Proposed Error Convergence Time (s)

Algorithm Follower robot 1 x y

2.4 2.4

Follower robot 2 x y

3.8 3.8

Algorithm in [18] Error Convergence Time (s)

Follower robot 1 x y

4.4 4.4

Follower robot 2 x y

31.4 31.4

5.3 Formation Forming and Keeping

The simulation is used to validate that the proposed
algorithm quickly forms the formation and the system
successfully reaches the goal with the desired formation.
The comparison with [17] validates the effectiveness of the
proposed algorithm.

Figure 4 shows several simulation results where four
robots form the desired formation and keep formation
in the process of reaching the goal. Initial positions of
leader robot, three follower robots are specified as (6,7) m,
(1,6) m, (10,2) m, and (3,3) m. The position of goal is
specified as (15,13) m. The desired formation shape is a
diamond. The desired distance between any two robots is
Ld =3 m. The time step equals 0.2 s.

Figure 4(a) shows the formation trajectories. Three
follower robots quickly form the formation and achieve
path planning with the desired formation.

Figure 4(b) and 4(c) show the position errors of three
follower robots in the formation path planning. We note
that the position errors of three follower robots quickly
converge to zeros, and four robots successfully reach the
goal with the desired formation.

The position error convergence times of three fol-
lower robots are given in Table 3. The table explains
that the error convergence time of the proposed algo-
rithm is much less than the algorithm in [17]. Meanwhile,
the time of reaching goal with the proposed algorithm is
much less than the algorithm in [17], because leader robot
does not need to wait for the follower robot forming the
formation.

The proposed algorithm not only quickly forms the
formation, but in real-time tracks leader robot in multi-
robot formation path planning.

6. MobileSim Experiments

The experiments validate the proposed algorithm in
MobileSim simulator. The simulator is a connection option
that provides a virtual replacement for AmigoBot. It
has eight sonars used for object detection and distance
detection. The program performing on the simulator has
the same effect with the program performing on the actual
robot’s PC.

In the experiment, three robots are placed with the
initial configurations of (0,0) m, (0, −1) m, and (0, −2) m.
Linear velocity of leader robot is specified as vi =0.15m/s,
and the maximum linear velocity of follower robot is spec-
ified as Vmax =0.5m/s.
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Figure 4. Formation with the proposed algorithm: (a) trajectories; (b) x errors of three followers; and (c) y errors of three
followers.

Table 3
Comparison of Error Convergence Times with Different Algorithms

The Proposed Error Convergence Time (s) Time of Reaching Goal (s)

Algorithm Follower robot 1 x y 22.8

3.0 3.0

Follower robot 2 x y

3.0 2.8

Follower robot 3 x y

2.6 2.6

Algorithm in [17] Error Convergence Time (s) Time of Reaching Goal (s)

Follower robot 1 x y 44.6

8.2 8.2

Follower robot 2 x y

6.8 6.8

Follower robot 3 x y

6.8 6.8

Figure 5. Formation switching in MobileSim simulator: (a) trajectories; (b) position errors of follower 1; and (c) position
errors of follower 2.

6.1 Formation Switching

The experiment validates that the exchange between two
different formations successfully achieves with the pro-
posed algorithm in MobileSim simulator. The desired

formation shape is an equilateral triangle, and the desired
separation distance equals 1m.

Figure 5 shows several results where three robots
switch between two different shapes. From these figures,
we note that follower robots quickly track the leader robot.
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Figure 6. Formation with obstacle avoidance in MobileSim simulator.

Figure 7. Position errors of follower robots: (a) position errors of follower 1; (b) position errors of follower 2.

6.2 Formation with Obstacle Avoidance

The experiment proves that the proposed algorithm forms
the desired formation with obstacle avoidance inMobileSim
simulator. The position of the obstacle is specified as
(4,2)m. The desired separation distance equals 1.5m, and
the desired bearing angle equals π/3.

Figure 6 shows the formation trajectories of multi-
robot systems with obstacle avoidance. Figure 7(a) and
7(b) show the position errors of follower robots 1 and 2.
From these figures, we can note that multi-robot systems
successfully avoid the obstacle and form the desired forma-
tion. Position errors of follower robots converge to zeros
quickly.

7. Conclusion

The proposed algorithm combining artificial immune net-
work and position tracking control method successfully
achieves formation with obstacle avoidance. The steer-
ing direction and the linear velocity for follower robot are
computed with different algorithms. The steering direc-
tion of follower robot is calculated with AINA. Follower
robot selects the optimal steering direction in many pos-
sible directions based on the steering direction of leader

robot, the azimuth of virtual robot, and the distance from
obstacle. The optimal steering direction quickly tends to-
wards the steering direction of leader robot, and success-
fully avoids obstacles. The linear velocity of follower robot
is calculated with position tracking control method. It
guarantees that the state errors of follower robots converge
to zeros quickly. The asymptotic stability of the entire
formation system is proven with Lyapunov theory. Sev-
eral Matlab simulations and MobileSim experiments vali-
date that the proposed algorithm successfully avoids ob-
stacles and quickly recovers formation after passing around
obstacles.
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