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Abstract1

In this paper, we study the combined effect of vehicle-to-grid (V2G) operations 
and solar PV generation on the power grid in terms of their contribution to 
effective load carrying capacity (ELCC). Our experiments are based on a mul-
ti-phase simulation and optimization framework we have designed and imple-
mented along with actual hourly load data, actual hourly time synchronized solar 
radiation data, and actual capacity auction market data for New York City, and 
real projections of the plug-in electric vehicle (PEV) population. This work 
considers the change in ELCC for varying levels of installed solar generation 
capacity and size of PEV fleets, and quantifies the economic benefits of these 
changes utilizing the capacity auction market data. Our study shows a potential 
V2G ELCC of 200 MW in New York City for the expected number of PEVs in 
2015-2017. This represents about $20 million in economic benefit per year from 
capacity gains alone. About 60% of the battery costs are recoverable from the 
PEV capacity contributions at initial PEV penetration levels. A unique observa-
tion from our study is that, contrary to conventional expectation, there is no 
marginal gain in solar ELCC from PEVs above the ELCC we already obtain from 
the PEVs alone. 
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1. Introduction  

The penetration of electric cars is expected to grow at a rapid 
pace over the current decade with the projected number of elec-
tric vehicles on the road in the US alone being in the 1 million 
range by 2015-2017 [1]. At the same time, installed solar gener-
ation capacity in the US has been roughly doubling each year for 
the last few years with the trend expected to continue [2]. In this 
paper, we have analyzed the combined impact of increasing 
penetrations of plug-in electric vehicles (PEVs) and solar gener-
ators on the load carrying capacity of the grid. 
 PEVs can impact an electric grid via vehicle-to-grid (V2G) 
and grid-to-vehicle (G2V) operations. For our study, we consider 
PEVs only as those are the vehicles that connect to the electric 
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grid for charging their batteries via G2V operation, and, poten-
tially supply energy back to the grid from their battery if neces-
sary which is commonly known as the V2G operation. PEVs 
encompass both pure electric vehicles known as Battery Electric 
Vehicles (BEV) as well as the Plug-in Hybrid Electric Vehicles 
(PHEV).  
 On one hand, charging of the electric vehicle batteries (G2V) 
can represent significant additional load on the grid. If the timing 
of this charging is not properly managed, it may lead to spikes in 
peak load reducing the reliability of a grid unless additional 
generation capacity is added. Also, spatial localization of vehicle 
charging spots can cause bottlenecks in the electricity distribution 
network. On the other hand, given the potential for V2G, the 
electric vehicles represent a significant amount of distributed 
storage capacity available to the grid. If the timing of vehicle 
charging and discharging (to the grid via V2G) are properly 
optimized, the fleet of electric vehicles can be harnessed to effect 
temporal shifting of load from peak hours to non-peak hours with 
the vehicles effectively acting as a negative load during peak 
hours by supplying electricity back to the grid. This can con-
tribute additional load carrying capacity to the grid. This capacity 
can be measured by effective load carrying capacity (ELCC). 
ELCC of an energy source is defined as its ability to support 
additional peak load without increasing the grid’s loss of load 
probability (i.e. the probability that generation will be less than 
load at some point over a time window) [3]. Alternatively, ELCC 
of a source represents the amount of existing supply capacity that 
can be removed by adding the source while serving the same peak 
load without increasing the loss of load probability.  
 In this study, we have developed a practical optimization 
algorithm for the V2G control and built a simulation framework  
to analyze the effective load carrying capacity added to a grid by 
different populations of electric vehicles. We ran this simulation 
framework utilizing actual hourly load data of New York City for 
the full years of 2008 and 2009 and with the projected electric 
vehicle penetration numbers for the city in 2015-2017 [1]. Due to 
ongoing energy efficiency initiatives, we assumed the load pat-
tern in the 2015-2017 timeframe will be reasonably close to the 
current one. New York City was chosen for testing the optimiza-
tion algorithm and simulation framework because (1) it is the 
largest metropolitan area in the United States, (2) it is projected to 
be one of the early adopter cities for electric vehicles, and (3) it 
has a well established price history for electric capacity via the 
auctions market. For battery capacity and mileage, we used the 
official specifications released by the US Environmental Protec-
tion Agency (EPA) based on their actual testing of Chevy Volt 

Alternative Energy, Vol. 2, No. 1, 2013 



2 
 

[4]. 
 We have obtained promising initial results from our study. 
We observe that the incremental load carrying capacity contrib-
uted by V2G increases steadily with the size of the fleet. Capacity 
auction market data has been used to quantify the economic 
benefit contributed by the PEVs due to their load carrying ca-
pacity. Our results show a potential PEV ELCC of 200 MW in 
New York City for the expected number of PEVs in 2015-2017. 
This represents about $20 million in economic benefit per year 
from capacity gains alone. Our estimation model demonstrates 
that at smaller fleet sizes, up to 60% of the projected battery costs 
of electric vehicles are recovered via the load carrying capacity 
contributed to the grid alone. At projected level of fleet size for 
2015-2017, about a third of the cost is recovered. This represents 
a compelling economic argument for the electric vehicles aside 
from the environmental benefits or energy security benefits that 
accrue from the electric vehicles. We also believe that, based on 
these results, a policy argument can be made for grid operators to 
share a portion of the economic benefit from the incremental load 
carrying capacity toward helping finance part of the cost of 
electric cars.  
 The requirements of charging the PEV batteries via G2V 
operations can increase the aggregate load in the grid. However, 
in a related research [5], we had shown that at the PEV penetra-
tion levels under study, the grid’s capacity to charge the PEVs is 
more than adequate using the scheme of charging the PEVs 
during off hours. 
 We further augmented our simulation framework to analyze 
the impact of electric cars on the effective load carrying capacity 
of solar generators to identify what kind of enhancement, if any, 
can be obtained to the solar ELCC. For running the simulation, 
we utilized actual hourly solar radiation data set from 2008 and 
2009 for the New York area synchronized with the hourly load 
data. The results from this simulation are also quite insightful. 
The study shows that there is no demonstrable marginal gain in 
solar ELCC from electric vehicles on top of the ELCC we already 
obtain from the electric vehicles alone. So, contrary to conven-
tional expectation, we did not observe an economic benefit for 
solar generators attributable to the electric vehicles. 
 Upon closer analysis of the behavior of combined ELCC of 
solar generators and PEVs as the installed capacity of solar 
generators increases, we observed a gradual reduction in the 
incremental ELCC contributed by PEVs at higher levels of solar 
penetration. As part of this research, we devised an approach to 
mitigate this loss by temporal spreading of PEV commute pro-
files. Based on simulation studies, our proposed temporal miti-
gation approach yields up to 72% improvement in an overall 
ELCC metric for PEVs and solar generators. 
 
2. Previous Work 
 
Kempton and Letendre [6] discussed the possibility of plug-in 
electric vehicles as a power source in 1997. There has been 
several studies since then involving grid-connected PEVs [7-10] 
particularly focusing on the V2G operations and their economic 
benefits [11-13].  Potential economic impacts of large-scale V2G 
operations were analyzed in [14]. An estimation of potential 
emissions reductions due to PHEVs in Colorado under various 
charging scenarios is provided in [15]. Case studies for V2G 
economic analysis for Sweden and Germany were done in [16]. 
An actual project in Denmark focusing on the integration of 
electric vehicles into a smart grid and their control strategies is 

described in [17]. A simulation-based estimation of power system 
regulation services from V2G operations in Western Denmark 
with high wind energy penetration is described in [18]. An 
analysis of leveraging aggregated plug-in electric vehicle loads to 
provide regulation service to a grid via demand dispatch and 
utilization of Google’s smart charging algorithm for electric 
vehicles can be found in [19].  Communication architecture and 
protocols for linking the electric vehicles, charging stations, 
power generating units, the grid and control points are discussed 
in [20,21].  
 A survey of various approaches for computing the capacity 
credit of power generating units and their application for con-
ventional power plants and wind power generators are described 
in [22, 23]. The Task Force on the Capacity Value of Wind Power 
of the IEEE Power and Energy Society identified a preferred 
capacity calculation method for intermittent energy sources 
based on ELCC [24] which has been adopted in this paper. 
 Details of a study of the ELCC of solar photovoltaic gener-
ators under different solar panel geometries and varying levels of 
solar penetration on a state-by-state basis in the United States are 
provided in [25]. 
 In none of the previous work we examined, we found the 
type of quantification of the combined ELCC contributions of 
PEVs and solar generators as we report in this paper, nor did we 
encounter a flexible simulation framework that analyzes the 
impact of temporal adjustments in commute profiles on grid 
ELCC in a systematic way.  
 
3. Background 
 
We consider the perspectives of three primary stakeholders in this 
study:  

(1) grid operators/utilities 
(2) owners of electric vehicles, and 
(3) solar power generators 

 
PEVs represent a significant new load for the electric grid. At the 
most common charging level envisioned (Level 2 charging) of 
240V x 30A [1], each PEV will add 7.2 kW of additional load 
while charging. This can add up to 400 MW to the peak demand 
in New York City by 2015-2017 based on the PEV fleet projec-
tions [1] if charging is not controlled by a suitable optimization 
scheme. From the point of view of grid owners or utilities, 
serving this additional peak demand will require provisioning of 
expensive additional capacity assuming that the reliability of the 
grid (i.e. loss of load probability) cannot be compromised. 
 From the point of view of the vehicle owners: (1) For PHEVs 
(e.g. Chevy Volt), the miles driven using electricity have to be 
maximized (and miles driven using gasoline minimized) in order 
for them to realize the full economic and environmental benefit. 
So it is desirable to have enough charge in the battery that can last 
until the next re-charging. (2) For BEVs (e.g. Nissan Leaf), 
running on gasoline is not even an option as these cars do not 
have an internal combustion engine. So there always has to be 
enough charge left in the battery before the next re-charging for 
the owners to avoid getting stranded on the road. 
 Solar power generators face the issue of variability and 
uncertainty related to their power output due to the variable and 
unpredictable nature of sunlight.  This intermittency in power 
output results in a relatively low ELCC of solar generators. A 
prior study found the ELCC of solar photovoltaics in New York 
to be in the 28% to 53% range for solar penetration ranging from 
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20% to 2% [25].  Having adequate energy storage capabilities 
available might allow the solar generators to smooth out the 
variability in their power output to some degree potentially 
improving their ELCC.  
 
4. Proposed Framework 
 
We devised an optimization algorithm for charging (G2V) and 
discharging (V2G) of PEVs with a view toward efficacy and ease 
of implementation in practice. The algorithm schedules the 
vehicles to charge in the off-peak hours after their owners have 
driven back home from work.  This is to ensure that the vehicles 
do not increase the peaking capacity requirement of the grid. 
During the working hours, the vehicles are plugged into the grid 
while parked and kept on a stand-by mode for potential V2G 
operation. If the supply capacity of the grid falls below the ag-
gregate load at any point during those hours, the grid connected 
vehicles will try to meet that shortfall by supplying power back 
into the grid from their batteries as long it will not cause the 
charge level in the batteries to drop below the minimum level of 
charge required for the cars to be driven back from work to home. 
So, the objective of the algorithm is to minimize the loss of load 
in the grid while satisfying the required state of charge criteria of 
the electric vehicle owners. A high-level outline of the optimiza-
tion algorithm is provided in Figure 1. 
 Our Monte Carlo-based simulation framework has four 
phases. 
 Phase 1: Actual aggregate load on the grid at hourly fre-
quency (or any other frequency chosen) is played back into the 
framework. It also simulates the total power supply available to 
the grid from all the generating units combined at each of the 
sampling intervals taking into account the failures of individual 
generating units. As an example, we have taken the peak supply 
capacity of a grid to be the peak load over a number of years plus 
a reserve margin. We have used statistical simulation to derive a 
model of hourly failure rates of the individual generating units 
based on the actual load time series data, peak supply capacity 
and the required reliability (i.e. the target loss of load probabil-
ity).  
 Phase 2: We then introduced gradually increasing numbers 
of PEVs into the simulation framework with their V2G opera-
tions controlled by our V2G optimization algorithm. As the PEVs 
are introduced, we took off some of the existing generating 
capacity from the grid to observe if there is degradation in the 
grid reliability – i.e. if there is an increase in the loss of load 
probability.  Amount of existing generating capacity that can be 
taken off without impacting the grid reliability represents the 
ELCC of the given fleet of PEVs.  
 Phase 3: We subsequently re-ran the simulation framework 
by introducing gradually increasing solar generation capacity but 
without the PEVs. We played back the actual solar irradiation 
numbers into the framework for the same region as that served by 
the grid. The solar radiation numbers are time-synchronized with 
the load figures. We then used the solar radiation numbers to 
simulate the power output from a collection of solar photovoltaic 
generators using a linear function (since output of solar 
photovoltaics is proportional to the incident solar irradiation).  As 
the solar capacity is introduced, we took off some of the existing 
generating capacity from the grid to observe if there is a degra-
dation in the grid reliability.  Amount of existing generating 
capacity that can be taken off without impacting the grid relia-
bility represents the ELCC of the given set of solar generators 

without any V2G operations. 
 Phase 4: In the last phase of the simulation, we re-introduced 
the PEVs and controlled their V2G operation using our V2G 
optimization algorithm. We re-ran the simulation to re-compute 
the ELCC of the varying sizes of solar capacity with V2G oper-
ations present in the grid. 
 

Is available 
supply >= load?

Is this within 
working hours?

Is draw-able 
energy available 

from the PEV 
pool?

Is (available 
supply + max 

V2G power) >= 
load?

Supply V2G power 
and decrement 

energy available 
from the PEV pool

Determine the size 
of PEV pool 

available for after-
hours V2G

No

Yes

Go to next period

No

Yes

Yes

YesNo
[causes loss of load]

No
[causes loss of load]

 
Figure 1: A high-level outline of our proposed V2G optimization 
algorithm. 
 

 More formally, let us assume, we have the following relevant 
variables: 
 

L - pattern of aggregate load on the grid over a time pe-
riod T 
s - aggregate peak supply capacity 
f - model-based hourly failure rate of existing individual 
generating units 
lolp - reliability of the grid, represented by the loss of 
load probability 
B - effective operating range of the state of charge of a 
PEV’s battery 
c - average length of commute in miles 
m - mileage of the PEV in miles per Wh 
P - charging/discharging rate of the PEV battery 
I  - after-hours V2G participation rate of PEVs 
R - pattern of solar radiation in the region under study 
over time period T 

 
Note that the variables in capital letters represent vectors and the 
ones in lower case letters represent scalar values. f1, f2, g1, g2 in the 
equations below represent the functions being simulated. 
 Relationships represented by these functions are complex 
and do not necessarily have analytical forms. The equations 
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below outline the key independent and dependent variables 
involved in the relationships. However, actual relationships are 
simulated via code in our simulation framework. 
 

Aggregate 
Load

Solar 
Irradiation

Installed 
Solar 

Capacity

Size and 
Characteri

stics of 
the PEV 

pool

Our Simulation 
Framework

V2G Optimization 
Algorithm

Existing Supply and 
Failure 

Characteristics

ELCC of a fleet of 
PEVs

ELCC of a pool of 
solar generators 
without any V2G 

program

ELCC of a pool of 
solar generators 

with the V2G 
program

 
 
Figure 2: Key input and output components of the proposed 
simulation framework. 
 

 lolp = f1(L,s,f)        (1) 
 
In Phase 1 of the simulation, we calibrate f so we obtain the target 
lolp given L and s. 
 In Phase 2 of the simulation, for each run i, we introduce ni 
number of PEVs participating in the V2G program, and subtract 
generating capacity epi from the existing capacity s. The goal is to 
come up with an epi such that the grid’s loss of load probability 
remains unchanged at lolp. 
 
 lolp = f2(L, s – epi, f, ni, B, c, m, P, I)    (2) 
 
So epi represents the ELCC of a fleet of PEVs of size ni (for given 
values of B, c, m, P and I). 
 In Phase 3, for each run j, we introduce total solar photo-
voltaic rated capacity vj into the grid and subtract generating 
capacity esj from existing capacity s. Note that at this phase we 
assume there is no V2G program available in the grid. The goal is 
to come up with an esj such that the grid’s loss of load probability 
remains unchanged at lolp. 
 
 lolp = g1(L, s – esj, f, vj, R)      (3) 
 
So esj represents the ELCC of a pool of solar generators with 
rated capacity vj without any V2G program in the grid. 
 Finally, in Phase 4, we re-run each iteration j from Phase 3 
after introducing n number of PEVs participating in the V2G 
program. Generating capacity espj is subtracted from existing 
capacity s. Again, the goal is to come up with an espj for each vj 
such that the grid’s loss of load probability remains unchanged at 
lolp. 
 
 lolp = g2(L, s – espj, f, vj, R, n, B, c, m, P, I)   (4) 
 
So espj represents the ELCC of a pool of solar generators with 
rated capacity vj with a V2G program in the grid that includes n 
PEVs. 
 Let ∆esj  represent the gain in solar ELCC for rated solar 

capacity of vj that is attributable to the V2G operations involving 
a fleet of n PEVs.  
 
  ∆esj = espj – esj        (5) 
 
Let’s assume ep represents the ELCC of n PEVs participating in 
the V2G program from (2). 
 The maximum marginal net ELCC accrued to solar genera-
tors due to a V2G program involving n PEVs is given by ∆e. 
 
 ∆e = max(∆esj) – ep       (6) 
 
5. Experiments 
 
We obtained hourly aggregate load data for New York City for all 
of 2008 and 2009 from the New York Independent System Op-
erator records [26]. For calculating peak supply capacity of the 
grid, we added the requisite reserve margin [27] on top of the 
peak load from 2008-2009. Loss of load probability is obtained 
from reliability guidelines of the New York State Reliability 
Council [27]. Projected size of the PEV fleet in New York City, 
their charging/discharging rates, and average commute miles per 
day were obtained from [1]. We used the battery capacity, effec-
tive operating range of the battery’s state of charge, and number 
of Wh consumed to drive a mile for Chevy Volt from the official 
specifications released by the Environmental Protection Agency 
[4]. Hourly solar radiation data for all of 2008 and 2009 for the 
New York area were obtained from the National Climatic Data 
Center [28]. 
 All these data were used as inputs to our optimization algo-
rithm and simulation framework to obtain the ELCC figures 
under different scenarios.  
 
6. Results 
 
As we increased the size of PEV fleet participating in V2G, we 
saw a gradual increase in the ELCC contributed to the grid by the 
PEVs as shown in Figure 3. 
 For the projected number of PEVs in New York City [1] in 
2015/2017 – 54,069 – the ELCC is 200 MW assuming all the 
PEVs participate in V2G. 
 Based on additional simulations we ran for a subsequent 
study [5], we were able to confirm that at these levels of PEV 
penetration, G2V power does not become a constraint, and there 
is always adequate grid capacity to fully charge the PEV batteries 
during off hours.  
 

 
 

Figure 3: ELCC of PEV fleets of various sizes. 
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 When we ran the simulations with increasing amounts of 
installed solar photovoltaic generating capacity, we observed the 
pattern of solar ELCC shown in Figure 4 without any V2G 
program present in the grid. 
 As evidenced from Figure 4, solar ELCC seems to flatten out 
at around 700 MW without any presence of V2G operation in the 
grid. 
 

 
  
Figure 4: ELCC of solar generation without V2G. 
 

 In percentage terms, ELCC of solar generation gradually 
drops from a high of 55% of installed capacity at low levels of 
solar penetration to around 14% of installed capacity at high 
penetration levels. The details of solar ELCC in % terms are 
given in Table 1. This result seems consistent with 53% solar 
ELCC reported earlier for New York state at low levels of solar 
penetration [25]. 
 With the projected number of PEVs in 2015-2017 [1], solar 
ELCC gets a significant boost at lower levels of solar penetration. 
Comparing Figures 4 and 5, we observe that solar ELCC with 
V2G starts at 338 MW for 250 MW of installed solar capacity as 
opposed to 138 MW of ELCC without V2G. But ELCC appears 
to flatten out at around 750 MW as seen from Figure 5 assuming 
all the PEVs participate in V2G. Table 2 shows the ELCC of solar 
generation as a % of total installed capacity for varying levels of 
installed capacity with V2G operation present in the grid for the 
projected number of PEVs in 2015-2017. 
 Figure 6 shows the trend in solar ELCC with and without 
V2G. As evident from the chart, at low levels of solar capacity, 
there is a significant difference in ELCC between the two sce-
narios, e.g. 135% with V2G versus 55% without V2G for 250 
MW of installed capacity.  Our observation about the greater than 
100% solar ELCC with V2G at low levels of installed solar 
capacity is that it is due to the ELCC contributed by the PEV fleet 
alone (200 MW) which has been counted in the solar ELCC 
figure. V2G contributed boost in solar ELCC diminishes gradu-
ally as solar capacity grows. There is virtually no gain in ELCC 
as we reach around 5000 MW of installed capacity. 
 Finally we subtracted the solar ELCC without V2G from 
solar ELCC with V2G, based on (5), at different levels of in-
stalled solar capacity to identify the gain in solar ELCC that is 
attributable to V2G. Figure 7 shows the trend in ELCC gain as 
the installed capacity increases. The gain starts out at 200 MW at 
low levels of solar capacity and goes down to around 50 MW as 
the capacity reaches 5000 MW.  The important result here is that 
the ELCC of the V2G operation alone (without any solar capacity) 
is 200 MW at the projected size of the PEV fleet. So, in effect, we 
see no marginal net gain in ELCC of solar generation, per (6), 
that is attributable to PEVs and which cannot  be obtained by the 
V2G operation alone. 

  

Table 1 
ELCC of Solar Generation (%) of Installed Capacity without 

V2G 
 

Installed Solar Capacity 
(MW) 

Solar ELCC  
(%) 

250 55 
500 45 
750 40 

1000 35 
1250 34 
1500 30 
1750 28 
2000 27 
2250 25 
2500 24 
2750 22 
3000 20 
3250 20 
3500 18 
3750 18 
4000 16 
4250 16 
4500 16 
4750 15 
5000 14 

 

7. Analysis of Results and a Potential ELCC Enhancement 
Approach 
 
One of the possible reasons why we saw the marginal gain in 
ELCC contributed by PEVs go down with increasing installed 
solar capacity is the fact that as installed solar capacity goes up it 
is able to meet more demand during the day-time working hours 
that was earlier met by energy from the PEV batteries via V2G 
operations. As a result, overall system ELCC is not improved 
significantly. We hypothesized that by temporal spreading of 
daily commute times and hence the V2G availability windows, 
we would be able to address power shortfalls over a longer period 
of time during the day and, in the process, would improve the 
overall system ELCC. 
 To validate our hypothesis, we designed an experiment 
where we used a series of different daily commute profiles and 
computed the combined ELCC of solar generators and PEVs for 
different levels of installed solar capacity under these various 
commute scenarios. 
 The commute scenarios we used in our experiments are 
shown in Table 3. For each scenario, the fraction of PEVs that 
start commute (either to or from work) at each hour is shown in 
the corresponding cell. For example, for Scenario-9, 60% of 
vehicles start commute to work at 8am, 20% start commute to 
work at 9am and 20% start commute to work at 10am. Similarly, 
for the same scenario, 60% of PEVs start commute from work to 
home at 5pm (i.e. hour 17), 20% start commute form work at 6pm 
and 20% start commute from work at 7pm. We assume that 
commute takes an hour each way during which time PEVs are not 
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available for V2G. PEVs are available for V2G while plugged in 
at work. 
 

 
 
Figure 5: ELCC of solar generation with V2G. 
 

Table 2 
ELCC of Solar Generation (%) of Installed Capacity with V2G 

 

Installed Solar Capacity 
(in MW) 

Solar ELCC  
(in %) 

250 135 
500 75 
750 56 

1000 48 
1250 42 
1500 37 
1750 35 
2000 31 
2250 30 
2500 27 
2750 25 
3000 24 
3250 22 
3500 21 
3750 20 
4000 19 
4250 18 
4500 17 
4750 16 
5000 15 

 

   Using Scenario-1 as the base case, ELCC of PEVs only 
(with no solar capacity) is 280MW for the projected number of 
PEVs in 2015-2017. By adding the ELCC of solar generators 
only (with no PEVs) for various levels of installed solar capacity, 
we get the upper limit of combined solar and PEV ELCC as 
shown in Table 4. 
 Combined ELCC of solar generators and PEVs that we were 
able to compute using our framework under various commute 
profiles are shown in Figure 8. The upper limit of possible com-
bined solar and PEV ELCC for different levels of installed solar 
capacity (from Table 4) is shown by the thick red line in the graph. 
We observe that for commute patterns that are more concentrated 
toward the 9am-5pm work schedule (e.g. scenarios 1-4), com-

bined ELCC is much below the potential maximum. As commute 
profiles are stretched out more and more after 9am, i.e. as more 
PEVs start their commute to work later and as a result return 
home from work later, we see noticeable improvement in the 
overall ELCC. Among the scenarios we studied, the best ELCC 
performance is produced by Scenario-11 that evenly distributes 
the commute start time between 8am and 12 noon with 20% of 
PEVs performing their commute during each hour within that 
time window. A possible factor driving this behavior is the fact 
that, in Scenario-11, as commute start times are evenly distrib-
uted over 5 hours starting at 8 am, the vehicle return times are 
also even distributed over 5 hours starting at 5 pm. This ensures a 
much better V2G coverage during evening hours as more PEVs 
are parked at their work locations and available for V2G. Better 
V2G coverage results in more reliable power system perfor-
mance (i.e. higher ELCC) as the PEVs can supply power in case 
evening load spikes up. 
 

 
 
Figure 6. ELCC of solar generation (%) of installed capacity with 
and without V2G. 
 

 
 

Figure 7. Gain in solar ELCC due to V2G at varying levels of 
installed solar capacity. 

 

 To quantify the overall gain in ELCC due to the temporal 
spreading in commute profiles, we came up with a metric that 
represents the loss in combined solar and PEV ELCC with re-
spect to the maximum potential value under different commute 
scenarios.  
 
epn = ELCC of a pool of n PEVs without any solar generation 
from (2) 
 
esv = ELCC of a pool of solar generators with rated capacity v 
without any PEVs from (3) 
 
 En,v = epn + epv          (7) 
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En,v represents the maximum possible combined ELCC from 
solar generators of capacity v and n PEVs. 
 Loss in combined ELCC from maximum potential is given 
by, 
 
 Cn,v = En,v – espv         (8) 
 
where espv represents combined solar and PEV ELCC from (4). 
 We created a metric  to compute the overall loss in ELCC 
from maximum potential under a commute scenario for different 
levels of installed solar capacity given n PEVs in the grid. 
 
          (9) 
 under a given commute scenario   
 
We computed the value of  for scenarios 1 through 11 as 
shown in Figure 9.  
 

Table 3  
Different Commute Profiles Showing the Fraction of PEVS 

Starting Commute at a Given Hour (to/from work) 
 

 
 

Table 4 
Maximum Possible Combined ELCC from Solar and PEVs 

(MW) 
 

 
  

 As evidenced from the figure, loss in ELCC is reduced as 
commute profiles are more spread out over time and they are 
shifted to the right (i.e. more and more PEVs start their daily 
commute to work after 9am). Among the scenarios studied, 
Scenario 11 has the most spread out commute pattern with 20% 
of the PEVs scheduled to start their commute each hour between 
9am and 12 noon. This also offers the best ELCC performance 
producing the minimum value to . The primary reason is that 
this scenario provides good V2G coverage during early evening 
hours of high system load when solar power output also drops off 

with the sunset.  
 

 
 

Figure 8: Combined solar and PEV ELCC at varying levels of 
installed solar capacity under different commute profile scenar-
ios. 
 

 
 
Figure 9: Overall loss of ELCC for each commute scenario 
compared to the maximum potential value. 
 

8. Economic Analysis 
 
We used the results obtained from our framework to estimate the 
economic benefit derived from PEVs in terms of additional 
ELCC contributed to the grid. We contrasted this benefit to the 
projected cost of the PEV battery storage to come up with an 
analysis of what percentage of the storage costs are recoverable 
via capacity contributions.  According to Gartner Research, the 
total battery system installed cost is currently around $900 per 
kWh and falling at 10-15% per year to reach around $470 per 
kWh in 2015. Economic life of the PEV batteries was taken to be 
8 years based on the battery warranty of Chevy Volt [29] and 
ignoring any impact on battery life due to V2G operations. 
Economic value of electric capacity in New York City in the 
range of $100 per kW-yr was arrived at by analyzing the trend in 
capacity auction prices for the New York City market as recorded 
by the Federal Energy Regulatory Commission [30].  Based on 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Scenario-1 0 0 0 0 0 0 0.1 0.1 0.8 0 0 0 0 0 0 -0.1 -0.1 -0.8 0 0 0 0 0 0
Scenario-2 0 0 0 0 0 0 0 0.1 0.9 0 0 0 0 0 0 0 -0.1 -0.9 0 0 0 0 0 0
Scenario-3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0
Scenario-4 0 0 0 0 0 0 0 0 0.9 0.1 0 0 0 0 0 0 0 -0.9 -0.1 0 0 0 0 0
Scenario-5 0 0 0 0 0 0 0 0 0.8 0.1 0.1 0 0 0 0 0 0 -0.8 -0.1 -0.1 0 0 0 0
Scenario-6 0 0 0 0 0 0 0 0 0.7 0.1 0.1 0.1 0 0 0 0 0 -0.7 -0.1 -0.1 -0.1 0 0 0
Scenario-7 0 0 0 0 0 0 0 0 0.6 0.1 0.1 0.1 0.1 0 0 0 0 -0.6 -0.1 -0.1 -0.1 -0.1 0 0
Scenario-8 0 0 0 0 0 0 0 0 0.8 0.2 0 0 0 0 0 0 0 -0.8 -0.2 0 0 0 0 0
Scenario-9 0 0 0 0 0 0 0 0 0.6 0.2 0.2 0 0 0 0 0 0 -0.6 -0.2 -0.2 0 0 0 0
Scenario-10 0 0 0 0 0 0 0 0 0.4 0.2 0.2 0.2 0 0 0 0 0 -0.4 -0.2 -0.2 -0.2 0 0 0
Scenario-11 0 0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 -0.2 -0.2 -0.2 -0.2 -0.2 0 0

Commute from home to work
Commute from work to home

Commute start time

Installed Solar Capacity ELCC PEV Only ELCC Solar Only ELCC (Solar Only + PEV Only)
500 280 180 460
750 280 275 555
1000 280 375 655
1250 280 400 680
1500 280 425 705
1750 280 500 780
2000 280 525 805
2250 280 540 820
2500 280 580 860
2750 280 610 890
3000 280 625 905
3250 280 625 905
3500 280 625 905
3750 280 630 910
4000 280 675 955
4250 280 675 955
4500 280 680 960
4750 280 720 1000
5000 280 720 1000
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these inputs, we observe the battery storage cost and capaci-
ty-related economic benefits from the PEVs as shown in Table 5 
in the context of New York City. 
 We observe that about 60% of the battery storage costs are 
recoverable from additional load carrying capacity contributed 
by the PEVs participating in V2G with fleet sizes in the 10,000 
range. For the projected fleet size in 2015-2017 (the highlighted 
row in Table 5), about a third (32%) of the storage costs are 
recovered assuming that all the PEVs participate in V2G. This 
represents an economic value of $20 million per year. 
 By applying our temporal spreading approach of PEV 
commute profiles, we are able to generate significant enhance-
ment in overall ELCC contribution of PEVs and solar generators. 
For the projected number of PEVs in 2015-2017 and 5,000 MW 
of installed solar capacity, by moving from Scenario 1 commute 
profile to Scenario 11, combined ELCC is improved by 135MW. 
This represents an additional economic benefit of $13.5 million 
per year. 
  Several studies [31-32] have looked into the degradation of 
PEV battery capacity due to frequent discharging related to V2G 
operations. A multi-variate regression analysis [31] that modeled 
battery capacity fade as a function of driving-related discharge as 
well as V2G-related discharge (constant rate) found the relation 
to be almost linear (R2 = 0.96). The size of the linear regression 
coefficients imply that battery usage associated with driving has a 
bigger impact on battery degradation than the loss due to V2G 
use. In our simulation with target number of PEVs in 2015 in 
New York City, V2G energy discharge per year per vehicle was 
roughly 17.2 kWh. This represents a capacity-normalized energy 
of 1.076 (Chevy Volt capacity = 16 kWh). Using the linear re-
gression coefficient [31] of -0.0000271 for V2G energy discharge, 
capacity fade due to V2G per year is about 0.003%. Even over the 
expected life (8 years) of the battery, the total capacity degrada-
tion due to V2G appears to be minimal (0.023%).  
 

Table 5 
Economic Gain from Capacity Contributions of PEVs vs. Battery 

Storage Cost 
 

 
 

9. Conclusion and Future Work 
 
We observe a high degree of efficacy of our practical and easy to 
implement V2G optimization algorithm in leveraging the storage 
capacity of PEVs to improve the load carrying capacity of a grid. 
Also, our proposed simulation framework offers a very pragmatic, 
flexible and efficient approach toward analyzing and quantifying 
the impact of PEVs on a grid with varying fleet sizes, battery 
characteristics, vehicle efficiencies, commuting patterns, etc. It 
also provides an effective mechanism to estimate any potential 
impact of PEVs on the load carrying capacity of intermittent 

renewable power sources like solar. 
 Using the framework, we also were able to compute the 
economic benefit of PEVs in terms of their contribution of addi-
tional load carrying capacity to the grid. For the geographical 
area we studied in this paper - New York City - the potential 
capacity benefits represent about $20 million a year in economic 
value in the 2015-2017 timeframe. This is about a third of the 
projected annualized cost of the PEV batteries. This benefit can 
potentially be shared between the grid operator or utility, the PEV 
owners, and any other stakeholders in the value chain. This 
benefit is on top of other benefits attributable to PEVs including 
emission reductions, energy security, etc. 
 We also observed in our work that incremental benefit in 
ELCC attributable to V2G goes down as installed solar capacity 
is increased. We have devised and simulated an effective ap-
proach of mitigating this effect via temporal spreading of PEV 
commute profiles. We have proposed a new metric for computing 
the ELCC efficiency of various commute profiles and demon-
strated that the metric can be improved by up to 72% through 
suitable temporal shaping of commute profiles. 
 Potential future work would include running the simulation 
framework for other geographical areas with their own load, 
generation, and commute characteristics, PEV fleet size projec-
tions, other makes and models of PEVs, and with data over 
longer periods of time to identify larger patterns and trends. It 
would also be beneficial to run the framework for other inter-
mittent renewable energy sources, most notably wind, and  
compare the results with the findings for solar generation re-
ported in this paper. Another useful avenue of study would be to 
explore the feasibility and efficacy of various ways of motivating 
employers and commuters to spread out the commute times 
including sharing some of the economic benefits from such 
temporal adjustments between the grid operators, utilities, em-
ployers and commuters. 
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