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Abstract

Electroencephalography (EEG) signals are one of the most popular

signals used for brain–machine interfaces (BMIs). EEG-based BMI

methods often work in batch mode, where a user must conduct the

learning phase for a pre-determined period of time. This paper

proposes an EEG-based sequential BMI system in which (i) the

machine can determine when to end the learning phase automatically

by monitoring the learning progress using the sequential error rate

(SER) as an evaluation index and (ii) sequential learning in both

the brain and the machine in a cooperative manner is employed. In

the proposed approach, called brain–machine co-learning, subjects

learn how to use the system by means of real-time visual feedback,

whereas the machine learns the subjects’ EEG signals by Bayesian

sequential learning. The SER refers to the average classification

error rate windowed over a short time period, which was proposed in

Hara et al., Sequential error rate evaluation of SSVEP classification

Problem with Bayesian sequential learning, Proc. 10th IEEE Int.

Conf. on Information Technology and Applications in Biomedicine,

Corfu, Greece, November 2–5, 2010, and it represents the status of

Bayesian sequential learning in real time. In our proposed approach,

subjects can use the system while eliminating unnecessary training.

The proposed system was tested against a steady-state visual-evoked

potential classification problem. The training phase varied for each

subject and was sometimes short, yet satisfactory, leading to high

classification accuracy.
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1. Introduction

Electroencephalography (EEG) monitors electrical brain
activity observed on the scalp by electrodes. EEG-based
brain–machine interfaces (BMIs) are one of the most stud-
ied methods among the many promising non-invasive BMIs
that have been proposed. This is mainly due to their fine
temporal resolution, ease of use, and relatively low setup
cost. However, each BMI method naturally has disad-
vantages. One disadvantage with an EEG-based BMI is
its susceptibility to noise, which has motivated a variety
of machine learning algorithms for decoding EEG signals,
and there have been significant advances in the area.

There are several ways to categorize BMIs, one being
to categorize them as operating in either the batch mode
or the sequential (online) mode. In the batch mode, the
EEG data collected from a subject is divided into two
subsets: training data and test data. The former is used for
training the machine learning algorithm, whereas the latter
is used to evaluate the algorithm’s capability to predict
the subject’s intention [1]–[3]. There are several aspects of
batch-mode learning that need to be improved:
• First, it is non-trivial how much data should be used
for training and how much data should be preserved
for testing. Also, the number of necessary training
data items may depend on each subject.

• Second, with the batch-mode learning, by definition,
one cannot perform sequential evaluations of the sub-
ject’s predictive performance as time evolves.

• Third, the batch-mode learning presumes that the data
is stationary, i.e., that the subject’s physical condition
and/or the environment around the subject does not
change over the period of the experiment.

• Fourth, there is no key for a subject indicating his
or her performance in real time. This often causes
difficulty in using BMIs.
By using the sequential error rate (SER), which was

proposed in [4], this paper proposes two paradigms in
Bayesian sequential learning.
• Automatic determination of when to stop the training
phase: For this purpose, the SER is monitored in real
time.
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Figure 1. (a) Trial flow of the proposed system showing display timing and (b) monitor display with two flickering checkerboard
stimuli.

• Brain–machine co-learning: Learning in both the brain
and the machine in a cooperative manner. In the
training phase, subjects learn how to use the BMI by
means of real-time visual feedback, whereas the ma-
chine learns the subjects’ EEG signals via a sequential
Bayesian learning algorithm.

It should be noted that the sequential learning in [4]
is performed each time trial data arrives, where trial data
consists of 3.0 s of EEG data. In the latter, learning
is performed 10 times within a trial in real time, which
enables visual feedback in the proposed BMI system. We
tested the proposed system against the steady-state visual-
evoked potential (SSVEP) classification problem. One of
the main reasons for using SSVEP is that it is relatively
stable in the presence of several possible EEG signals.
SSVEP-based BMI has been a well-known technology since
the 1990s [5].

2. Related Work

For the batch-mode learning, we cite the survey paper re-
ported in [1] instead of citing individual papers. Allison
et al. [6] report the appropriateness of an SSVEP-based
EEG system for those subjects with no experience in a
very noisy field setting. Martinez et al. [3] propose an
SSVEP-based online BMI system with visual neurofeed-
back, but besides the different approach for preprocessing
the EEG data, its algorithm is that of a fuzzy neural net-
work classifier, namely, adaptive neuro fuzzy inference sys-
tem (ANFIS), not Bayesian sequential learning. Brown et
al. [7] is a paper on a linguistics problem using a Bayesian
framework. There are also reports on Bayesian sequential
learning for EEG signals in [4] and [8], where the sequential
Monte Carlo (SMC) is used for implementation. In [4], the
SER was proposed for evaluating sequential learning.

Recently, some studies have focused on changes in the
subject’s condition during the use of brain-computer inter-
face (BCI). Satti et al. [9] use a covariate shift minimiza-
tion to alleviate the non-stationary nature of EEG data.
Chung et al. [10] propose an EEG-based BCI system that

takes into account the subject’s tiredness and uncertainty
of output during use, and displays a menu with two op-
tions, “guide” and “exit”, during the test phase to ask
the subject whether to do more training. This approach
can adapt to the subject’s physical condition and/or the
environment around the subject, but it depends on the
subject’s own decision. Our approach can automatically
evaluate the certainty of the system in the training phase.

3. Subjects and System

3.1 Subjects

Five volunteers (aged 19–23, four males and one female)
participated in the study. Written informed consent was
obtained from each subject on forms approved by the
ethical committee of Waseda University. All subjects were
healthy, with no past history of psychiatric or neurological
disorders.

3.2 Experimental Setup

EEG data were recorded with two active electrodes
(O1,O2) according to the international 10–10 system and
referenced to the left earlobe with a digitization rate of
500Hz. Each subject was seated in a comfortable chair
60 cm in front of a monitor. The flow of task events
is shown in Fig. 1(a), and the stimulus is illustrated in
Fig. 1(b).

The EEG data was measured with a Polymate AP1124,
a multi-purpose portable bio-amplifier recording device,
manufactured by TEAC Corporation, Tokyo, Japan. The
device is equipped with 24 channels with a maximum sam-
pling frequency of 1 kHz. In addition to electroencephalo-
grams, eyeball movement and other external signals can be
measured. The dimensions are W 90mm×H 44mm×D
158mm, and the weight is 300 g. The device is powered by
a battery.
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Figure 2. The scheme of the proposed BMI system. The system involves brain–machine co-learning with visual feedback,
and the SER is evaluated every time an item of data arrives. To automatically determine when to stop the training phase,
the SER is constantly monitored. The training phase is stopped when the SER is below a threshold for a certain period
(the stopping criterion), and then the system switches to the test phase automatically.

3.3 Procedure

Each subject completed five sessions. One session consisted
of two parts, a training phase and a test phase. In the
training phase, the subject underwent up to 20 trials.
Two flickering checkerboard stimuli were presented on the
monitor at frequencies of 4.29Hz on the left and 6.0Hz on
the right. The subject usually fixated on a central fixation
cross. When an arrow replaced the cross, the subject was
instructed to move his or her eyes to the checkerboard
indicated by the arrow for 8.0 s. During this time, 3.0 s
after the subject moved his/her eyes to the checkerboard,
a coloured circle appeared in the centre of the monitor for
visual feedback. The colour of the circle changed every
0.5 s according to the likelihood described in Section 5.4.
The colour had 10 gradations. If the likelihood was high,
the colour became bluish, whereas if the likelihood was
low, the colour became reddish. This colour change was
used by subjects to learn how to use the system and to
get an indication of their EEG condition in real time. The
direction of the arrow was alternated between left and
right in sequence. After 8.0 s, the subject returned his/her
eyes to the central fixation cross and rested for 5.0 s. This
sequence constituted one trial. The colour of the central
fixation cross was green when the subject should rest, and
changed to white while the subject moved his/her eyes to
the checkerboard.

When the prediction error was below a certain thresh-
old in two consecutive trials (details are described in the

next section), causing the system to automatically stop
the training phase, a honey-coloured circle was displayed
in the centre of the monitor during the rest time, so that
the subject would know when to start the test phase.

The test phase was used to evaluate the machine’s
capability to predict the subject’s intention. During this
time, the subject performed the same task as in the training
phase, but the machine could no longer learn the subject’s
EEG signal. The direction of the arrow was selected at
random in this phase.

4. System Implementation

4.1 Flow of the Trial

Figure 2 shows the implementation of our system. As
explained in Section 3.2, EEG data was acquired from
two channels (O1,O2) located in the occipital eye field.
One trial lasted for 8.0 s. Data in the first 0.0–1.0 s was
deleted to eliminate the influence of eyeball movements on
the EEG. The EEG data was converted into a frequency
spectrum by a discrete Fourier transform (DFT) with a
Hanning window. From each frequency spectrum, the two
frequency components (4.29 and 6.0Hz) were selected, so
that the feature vector was four-dimensional. The feature
vector was sent to the SMC algorithm every 0.5 s for 5.0 s
after the DFT time window of 2.0 s. In one trial, there were
10 steps. In each step, the past 20 items of observation
data were sent to the SMC.
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Each time EEG data arrived in 0.5 s, the likelihood
defined in Section 5.4 was computed and was converted
into one of ten different colours for display at the centre of
the monitor. This served as the real-time visual feedback
to the subject.

Note that the sequential learning process was not reset
even when moving to the next trial.

4.2 Sequential Error Rate

The SER was calculated in every step. The SER of the
t-th data item in this study is defined by:

SER :=
1

M

t∑
t′=t−M+1

I(yt′ �= yt′,pred) (1)

where yt (yt′) is the true class, and yt,pred (yt′,pred) is
the predicted class defined by (8). The function I(A)
represents an indicator function defined as 1 when A is
true and 0 when A is false. In our experiment, M =20.
We averaged the error over the interval {1, 2, . . . , t}, where
t< 20.

4.3 Criterion for Stopping Training Phase

From the start of the experiment, the SER was calculated
in each step for automatically evaluating when to stop
the training phase. A decreasing SER means that the
brain–machine co-learning is functioning well, whereas an
increasing SER means that the brain–machine co-learning
is not working. Stopping the training phase when the SER
is decreasing is effective for ensuring that the BMI performs
prediction correctly. In this paper, we set a parameter μ
as the threshold for estimating when to stop the training
phase. Within one trial containing 10 datasets, if the SER
of the latter half, that is, 6 out of 10 datasets, is below μ,
the system considers that the brain–machine co-learning
is functioning well, in at least the first trial. When this
event occurs a second time in a row, the system stops the
training phase automatically.

5. Algorithm

Let xt ∈Rd be the feature vector at the t-th data item,
where d represents the dimension of xt , which, in our paper,
is the DFT spectrum of a single trial EEG. Let yt ∈ {0, 1}
be the binary class label of each trial, where 0 corresponds
to the right flickering image, and 1 corresponds to the left
flickering image. Our purpose here is to learn parameters
associated with the basis function, to be defined shortly,
and to predict the subject’s intention given SSVEP data,
each time data arrives.

5.1 Basis Function and Classifier

This study utilizes the nonlinear basis function used in
Ref. [3] which we denote by f(x t, w t) where w t denotes
the parameter vector associated with the basis function.
To associate the quantity of f(x t, w t) with the class label,
consider:

P (yt|x t,w t) := Be(yt; Φ(f(x t;w t))) (2)

where Φ is a function that monotonically maps the real
numbers onto [0,1]. Of the several possible choices of Φ,
we choose Φ(u) := 1

1+ exp(−u) , and consider:

P (yt|x t,w t) := (Φ(f(x t;w t))
yt(1− Φ(f(x t;w t))

(1−yt)

(3)

5.2 Parameter Search Stochastic Dynamics

We perform a sequential stochastic search of the parameter
w t each time trial data is acquired:

P (w t|w t−1, γ ) :=
1

Zw(γ)
exp

(
−γ‖w t −w t−1‖2

2

)
(4)

where Zw represents the normalization constant. This
amounts to searching for a new value wt based on the
previous value wt−1, but in a random walk manner:

wt = wt−1 + µt (5)

whereµt is a Gaussian random variable with zero mean and
variance 1/γ. We note that γ determines the parameter
search region for wt .

5.3 Posterior Distributions

Letting x1:t := (x1, . . . ,x t), y1:t := (y1, . . . , yt), one can de-
rive its sequential posterior distribution at step t:

P (w t|x1:t, y1:t) =
P (yt|x t,w t)P (w t|x1:t−1, y1:t−1)∫
P (yt|x t,w t)P (w t|x1:t−1, y1:t−1)dw t

(6)

The second factor in the numerator is given by:

P (w t|x1:t−1, y1:t−1)

=

∫
P (w t|w t−1)P (w t−1|x1:t−1, y1:t−1)dw t−1 (7)

At the t+1-th step, let the EEG data x t+1 be given.
Then the prediction at this step amounts to computing the
predictive probability:

P (yt+1|x1:t+1, y1:t)

=

∫
P (yt+1|x t+1,w t+1)P (w t+1|x1:t, y1:t)dw t+1 (8)

This study uses the SMC to evaluate (6) and (8) in an
attempt to evaluate the SER.

5.4 Robustness Issue

Note that training data with the same class label for
consecutive steps often leads to inappropriate sequential
posterior samples, because appropriate posterior samples
are difficult to find when only one class label is available for
a whole interval. To overcome this difficulty, we regard the
EEG signal for the past 20 items as the observation data
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Figure 3. Prediction results of subjects C (left) and D (right). The upper figure is the trajectory of the label predictive
probability. The red rectangles in the upper graph stand for the true labels when the true class labels are 1. Intervals without
such rectangles indicate that the true labels are 0. The bottom graph shows the SER associated with the above data. Note
that there are 10 data in a trial. The two subfigures on the right show the prediction results for Subject D, where it took the
subject 15 trials to satisfy the stopping criterion, which was the longest among the subjects.

at time t, where both labels are present in these 20 items.
We redefine the equation for the likelihood as follows:

(t > 20) P (yt|x t,w t)

:=
t∏

τ=t−19

(Φ(f(x τ ;w τ ))
yτ (1− Φ(f(x τ ;w τ ))

(1−yτ ) (9)

6. Results

This section reports the results of automatic evaluation of
the SER and the degree of accuracy achieved with the pro-
posed system. Two channels (O1,O2) in the occipital area
were selected for the experiments. The time-series data
from each trial was converted into a frequency spectrum
by a DFT with a Hanning window of 2.0 s. From each
frequency spectrum, the two frequency components (4.29
and 6.0Hz) were selected, so that the feature vector was
four-dimensional.

6.1 Experimental Settings

Various experimental settings were made, as follows. The
number of samples, n, was 1,000, and the hyper-parameter,

γ, was 100. The SER threshold, μ, used to automatically
estimate when to stop the training phase was set to 0.25.
This value has roots in an empirical rule; for example, our
past research showed that for over 80% of training data, the
SER was under 0.25 in some subjects who resulted in high
classification accuracy. In the case where the SER did not
fall below the threshold μ, the training phase was stopped
automatically. One trial lasted for 8.0 s, and rests between
trials lasted for 5.0 s. One session included a training phase
(up to 20 trials) and a test phase (10 trials), and so the
maximum experimental time for one session was 6.5min.

In addition to evaluating the SER, we also evaluated
the classification accuracy during 10 trials of the test phase.

6.2 Experimental Results

Five subjects (A, B, C, D, and E) participated in the
experiment. The EEG data of the trial was subjected to a
DFT to obtain our feature vector.

The two subfigures on the left in Fig. 3 show the pre-
dictions associated with Subject C, who made a success-
ful completion within four trials in terms of the stopping
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Table 1
The prediction performance of the subjects A–E in their test phases, consisting of five sessions

Session Number

1 2 3 4 5

A Accuracy (%) 85.7 85.7 100 75.0 80.0

#Trials for completion 8 7 7 9 10

#Inconclusive trials 3 3 0 2 0

B Accuracy (%) 100.0 100.0 80.0 70.0 100.0

#Trials for completion 4 5 5 8 7

#Inconclusive trials 0 0 0 0 0

C Accuracy (%) 100.0 100.0 100.0 100.0 100.0

#Trials for completion 5 3 6 3 4

#Inconclusive trials 1 0 2 1 0

D Accuracy (%) 100.0 87.5 100.0 100.0 100.0

#Trials for completion 10 15 3 7 8

#Inconclusive trials 1 2 0 0 2

E Accuracy (%) 100.0 100.0 100.0 100.0 100.0

#Trials for completion 12 7 5 5 5

#Inconclusive trials 1 0 0 0 0

The data consists of accuracy (%) and the number of trials needed to satisfy the stopping criterion described in Section 4.3. The inconclusive

trials indicate the trials that could not be judged as correct or incorrect.

criterion described in Section 4.3. The blue graph in the
upper left of the figure is the label predictive probability,
defined by:

zt :=

∫
P (yt|xt,wt)P (wt|x1:t−1, y1:t−1)dwt

= P (yt|x1:t, y1:t−1) (10)

The red rectangles in the bottom-left graph stand for
the true labels when the true class labels are 1. Intervals
without such rectangles indicate that the true labels are 0.

Table 1 summarizes the prediction performance of the
subjects A–E in their test phases. The data consists of
accuracy (%) and the number of trials needed to satisfy the
stopping criterion. We note that the number of trials each
subject must perform depended on the performance. The
minimum number of trials before stopping was 3, whereas
the maximum number of trials before completion of the
training phase was 15. Each subject underwent 10 trials
in each test phase. In one trial, 10 datasets were sent to
the system and 10 label predictive probabilities (8) were
received. We assumed that each trial indicated at the left
was “correct” if six out of ten label predictive probabilities
exceeded 0.5. Similarly, each trial indicated at the right was
correct if six out of ten label predictive probabilities were
less than 0.5. If five out of ten label predictive probabilities
were correct and the rest were incorrect, we regarded the
trial as inconclusive and excluded it when evaluating the

accuracy. We evaluated the accuracy of our proposed
system by the following method, where C is the number of
correct trials, and IC is the number of incorrect trials:

accuracy :=
C

(C + IC)
(11)

7. Discussion

Figure 3 indicates that our proposed sequential learning al-
gorithm, together with the SER, is functional. As shown in
Table 1, the accuracies for the five subjects were reasonably
high.

The left graph in Fig. 3 shows the result of one of the
sessions for Subject C in the training phase. The trajectory
of label predictive probability is shown at the top, and
the SER is shown at the bottom. In the former, the red
rectangles represent the true label when the true class
labels are 1, whereas the intervals without such rectangles
indicate that the true labels are 0. During trials 1–2,
the label predictive probability gradually approached its
true label. Note that the class labels during this period
remained the same, as alluded to in Section 5.4. After this
period, the label predictive probability immediately started
following its true labels, which appeared to indicate that
the proposed brain–machine co-learning is functional. The
bottom-left graph shows the SER of Subject C in the same
session as above. The SER started decreasing immediately
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from the start of trial 1 until the trial ended. During
trial 2, however, the SER gradually increased because
another label came into the learning data. After this, the
SER gradually decreased with some fluctuations. Near
the end of trial 4, the SER dropped to almost 0.1. The
proposed system detected this and stopped the training
phase automatically. The right part of Fig. 3 shows
the corresponding results for Subject D, who needed the
longest training phase. In the graph of the label predictive
probability shown in the upper right, sometimes the label
predictive probability did not follow the true label, as
observed in trials 5–7. The SER at the bottom right
shows a tendency different from that of Subject C. The
SER started decreasing immediately after the experiment
started, like Subject C. In this case, however, even though
the SER dropped to around 0.3, it did not decrease any
more during trial 3. The SER then dropped to 0.1 and
increased gradually. As described in Section 4.3, the
system does not stop the training phase unless the SER
falls below the threshold for a certain period of time for
the second trial in a row. Therefore, the training phase
continued. From the start of trial 14, the SER was under
0.25 for a while. The system detected this and stopped the
training phase.

The number of trials of the training phase in Table 1
was between 3 and 15. From this result, we observed
that the time variation of the SER could vary from session
to session, which means that even for the same subject,
his/her condition differed in each session. The classification
accuracies of these subjects were generally high: two out of
five subjects achieved 100% in all sessions, and one subject
achieved the minimum number for the training phase.

This indicates the possibility that, if the subject can
learn how to use the system quickly, he or she can start
to use it immediately, which could be important in the
practical use of BMIs.

8. Conclusion

We constructed a BMI system that automatically deter-
mines when to stop the training phase by employing a
brain–machine co-learning approach involving Bayesian se-
quential learning and real-time visual feedback. The sys-
tem was evaluated in an SSVEP two-class classification
problem, where five subjects participated in the experi-
ment. The number of trials for the training phase varied
among subjects. The minimum was 3, and the maximum
was 15. The accuracy of the classification was high, and
two subjects achieved 100% in all sessions.
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