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Abstract

Human tumours are often associated with the accumulation of

chromosomal alterations in the cancer cells. The identification

of characteristic pathogenic routes improves prediction of survival

times and optimal therapy choice. The simplest model assumes

independent alterations. Then progression is measured by the count

statistic, the total number of alterations. An advanced model is the

oncogenetic trees mixture model. An oncogenetic tree allows both

independent and sequential relationships between alterations, and

the mixture model divides the patients into groups with different

progression paths. Progression along such a model can be quantified

univariately by the GPS (genetic progression score). On real

cancer data, the GPS was shown to discriminate better than the

count statistic between patient subgroups with different survival

prognosis. Here, in a simulation study, we evaluate the necessary

numbers of patients for detecting true relationships between genetic

progression and survival time. We generate survival times correlated

with count statistic and GPS, respectively. If the simple model is

the correct one, misspecification with the advanced model requires

about 20% larger sample size, independent from the number of

events. In contrast, misspecification with the simple model leads

with increasing numbers of events from 20% to 70% larger sample

size. Additionally, if the true data-generating model is the mixture

model, the absolute numbers are more than twice as large, thus

favouring the advanced modelling approach especially in situations

with limited model knowledge.
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1. Introduction

Cancer pathogenesis and progression in tumours is charac-
terized by the accumulation of genetic changes in the can-
cer cells. Frequently observed alterations are gains or losses
of parts of chromosomes or mutations of specific genes.
Tumour progression of a single patient can be estimated
by quantifying the state of the tumour in a progression

∗ Department of Statistics, TU Dortmund University, 44221
Dortmund, Germany; e-mail: {netzer, rahnenfuehrer}@
statistik.tu-dortmund.de

Recommended by Dr. R.K.M. Karuturi
(DOI: 10.2316/J.2012.210-1029)

model. The state is typically related to the remaining time
of the respective patient until death or tumour recurrence.
Here, we provide a study for estimating and comparing the
required sample size (of tumour probes) for detecting sig-
nificant relationships between different cancer progression
scores and the survival times of the corresponding patients.

When modelling disease progression, the genetic alter-
ations are typically assumed to be irreversible. In general,
the crucial alterations are not independent of each other
such that simple counting of genetic alterations is not
sufficient for accurately quantifying disease progression.
Oncogenetic trees constitute a more flexible modelling ap-
proach than the basic independence model [1]. In an onco-
genetic tree model, every genetic event has exactly one
precursor event. This allows modelling both independent
and sequential relationships. A probabilistic framework [1]
provides convenient estimation of the tree topology. The
topology consists of order relationships between the events
and conditional probabilities for the occurrence of succes-
sive events. The latter are probabilities for the occurence of
successor events given the precurser events have happend.

However, this model suffers from the drawback that
single observations not fitting the general overall model
influence the model building process too strong. Oncoge-
netic trees mixture models are mixtures of single oncoge-
netic trees. They can be used to estimate different disease
progression paths for different subgroups of the patient co-
hort under consideration [2]. This biostatistical model for
genetic tumour progression has been evaluated statistically
and clinically in many ways over the recent years [3]–[6].
The advantage of the mixture model is twofold. First, a
likelihood approach can be applied, as a noise component
pools all patients that are not in line with the main disease
progression mechanisms. Second, the model offers a high
level of interpretability, also in terms of subsequent anal-
ysis of potential biological explanations of ordered genetic
alterations.

Furthermore, the probabilistic framework of the onco-
genetic trees mixture model allows for the introduction of
a genetic progression score (called GPS in the following)
that quantifies tumour progression univariately according
to the state of a patient along the disease progression paths.
In various detailed analyses using Cox regression models,
it was shown that for patients with prostate cancer and
for patients with different types of brain cancer, a higher
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GPS is significantly correlated with shorter survival time
or time to tumour recurrence [3], [7]. Major issues for
evaluating the efficiency of the mixture model are assess-
ment of model stability and of the true prediction quality
of the GPS regarding survival times. Previous simulation
studies showed that the topology of the mixture model
cannot always be reliably estimated for small or moderate
sample sizes [5]. Furthermore, the complex model can lead
to overfitting due to the larger number of parameters in
comparison with a simple independence model. This raises
the question in which situations simple counting of genetic
events is better suited for quantifying disease progression
than using the more complex GPS.

Here, we provide guidance for a qualified model selec-
tion, i.e., for deciding if the independence model or the
mixture model is better suited for identifying a true re-
lationship between genetic progression and survival time.
We first simulate genetic measurements from the indepen-
dence model and the tree mixture model and calculate
the progression scores for the simulated data. Then we
draw survival times related to either the GPS or the count
statistic and calculate necessary sample sizes of patients for
re-identifying the specified relationships. The main goal is
to compare the two approaches with respect to the number
of patients needed to detect an association between the
progression score and the survival. Especially of interest is
the situation in which one model agrees with the truth and
the other is misspecified. The question is how much the
required sample size increases due to this misspecification.

In Section 2, we introduce the progression models and
progression scores in more detail and present a short de-
scription of the Cox regression framework [8] for modelling
our favoured dependencies between genetic measurements
and survival times. In Section 3, we introduce our simula-
tion study for computing the sample sizes needed to obtain
a required power. Particularly, in Section 4.2, we analyse
in detail the impact of the decision between simple and
complex progression scores.

2. Methods

We first briefly introduce oncogenetic trees, mixture mod-
els of oncogenetic trees, and the derived progression score
GPS. Then we explain how to relate genetic measurements
to survival times with the Cox proportional hazard regres-
sion model.

2.1 Oncogenetic Trees Mixture Models

An oncogenetic tree T is a probabilistic model for describ-
ing dependencies between several binary random variables
Xr, X1, . . . , Xl (with value 0 or 1), where 1 indicates oc-
currence of a genetic event, e.g., of a mutation. The tree
T =(V,E, r, p) is a directed and weighted acyclic graph
with root r. V = {r, 1, . . . , l} denotes the set of vertices
(events) and E⊂

[
V 2
]
denotes the set of edges. The

edge weights p correspond to the conditional probabilities
p(e)=Pr(Xv =1 | Xu =1), where u is a precursor event of
v and p(e) is the probability that v occurs after u has been
observed. For the initial null event we set Pr(Xr =1)=1.

Figure 1. Oncogenetic tree with l=5 events and condi-
tional edge probabilities p(e).

It can be interpreted as starting point of the disease.
Figure 1 depicts a basic example of an oncogenetic tree
with l=5 events.

The genetic pattern of a patient is described by a
binary vector x of length l, where 1 indicates occurrence
of the respective event. The tree T is a star if and only
if all events are independent. Only in this case it holds
Pr(x)> 0 ∀x∈{0, 1}l.

Such a tree model induces a probability distribution
P (X) on the set Ω= {0, 1}l of all possible 2l genetic pat-
terns. The probability that the tree T generates pattern x
is given by

Pr(x | T ) =
∏
e∈E′

p(e) ·
∏

e∈S×(V \S)

(
1− p(e)

)
(1)

Here S⊆V denotes the vertices in the tree that belong
to the events that have occurred according to pattern x.
E′ ⊆E is the subset of edges such that S is the set of all
vertices that can be reached from the origin in the partial
tree T =(S,E′, r, p). For all patterns x for which such an
edge subset E′ does not exist, it holds Pr(x | T )= 0 as
these patterns cannot be generated from T .

Given a sample of N patients each associated with a
genetic pattern x, the data can be summarized in the sam-
ple matrix XN =(xij) 1≤i≤N

1≤j≤l
. In many applications, every

patient is observed only once. For example, in cancer tu-
mours genetic events can often only be measured once due
to surgery that removes the tumour tissue. For this type
of cross-sectional data, Edmonds’ branching algorithm [9]
can be used to estimate an adequate compatible T . It
can be shown that this algorithm generates the true tree
asymptotically with probability 1 [1].

In a single oncogenetic tree model T , only patterns that
are in line with tree topology have positive likelihood. For
a data sample with at least one pattern with probability 0,
the joint likelihood would also be 0. Alternatively, observed
patterns would have to be excluded inappropriately from
the data. This drawback was overcome by the introduction
of mixture models of oncogenetic trees [2]. An oncogenetic
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Figure 2. Oncogenetic mixture model M=0.12 · T1 +0.88 · T2 with l=5 events and conditional edge probabilities p(e).

trees mixture model is defined by

M =
K∑

k=1

αkTk,
(
αk ∈ [0, 1] and

K∑
k=1

αk = 1

)
(2)

where Tk, k∈ 1, . . . ,K are single oncogenetic trees with
vertex set V . In addition, the first tree T1 is restricted
to have star topology, i.e., all events are assumed to be
independent; see Fig. 2 for an example of a mixture model
with one trivial component. The weights α1, . . . , αK are
called mixture parameters and denote the probabilities
with which the respective tree components generate pat-
terns. The parameter α1 can be interpreted as noise frac-
tion in the data. For T1 and consequently for the full model
M, it holds Pr(x)> 0 ∀x∈Ω.

The probability that pattern x is generated by a mix-
ture model M is given by

Pr(x | M) =
K∑

k=1

αkPr(x | Tk) (3)

where the probabilities Pr(x | Tk) are given by (1).
For fitting an oncogenetic mixture model given a sam-

ple matrix XN =(xij) 1≤i≤N
1≤j≤l

, Edmonds’ branching algo-

rithm cannot be directly applied as the assignment of
samples to tree components is not a priori given. With
an Expectation-Maximization(EM)-like learning algorithm
introduced in [2], the optimal assignment of samples to
estimated tree components can be achieved.

2.2 Genetic Progression Scores

The quantification of disease progression as a univariate
measure depends on the underlying progression model. In
the case of the independence model, one obvious choice is
to simply count the events observed. Formally, for the ith
patient (i=1, . . . , N) with genetic pattern xi, the so-called
count statistic is defined by

count(xi) =
l∑

j=1

xij (4)

If all events in the vertex set V are independent and
Pr(Xu)=Pr(Xv) ∀u, v ∈V , the count statistic is sufficient
for the sample XN .

For the oncogenetic trees mixture model, a more so-
phisticated progression measure was introduced in [3]. The
so-called GPS measures how many consecutive steps of the
tree model already have occurred according to the respec-
tive pattern. More precisely, if a pattern xi is in line with
one of the non-trivial components of a mixture model M,
the GPS tells how far the patient has advanced regarding
the tree, i.e., in terms of cancer progression how far the
disease has progressed.

Mathematically, the GPS is calculated by first trans-
forming the conditional probabilities on the tree edges into
waiting times. The GPS of a pattern xi is the expected
waiting time until this pattern is observed. We briefly
recapitulate this approach. Let the waiting time Wv be the
time between occurrence of an event v and its precursor
event u. Assume that Wv is exponentially distributed with
parameter λv. Let WS be the sampling time of a tumour,
i.e., the time between onset and discovery of the disease,
and assume that WS is also exponentially distributed with
parameter λS . The conditional probability p(u, v) for the
occurrence of v given occurrence of u can then easily be
calculated as

p(u, v) = Pr(Wv < WS) =
λv

λv + λS
(5)

The parameter λS of the sampling time cannot be esti-
mated from the data and is chosen such that

E(WS) =
1

λS
= 1 (6)

This choice can be interpreted as a scaling of the pro-
gression times (e.g., the tumour age) to a mean value
of 1. With (5) and (6), the conditional probabilities p
can be converted into the parameters of the exponential
distribution by

E(Wv) =
1

λv
=

1− p(u, v)

p(u, v)

1

λS
=

1− p(u, v)

p(u, v)
(7)
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The expected value of the waiting time Wv, conditional on
its precursor event, can thus be directly calculated for every
event in V and estimated by plugging in the estimates for
the probabilities p.

For a genetic pattern xi, the GPS is defined as the
waiting time from the root node r until all events in xi

have been observed:

GPS(xi) = EM (W (xi))=
K∑

k=1

Pr(Tk | xi) · ETk
(W (xi)) (8)

In general, this waiting time is a combination of maxima
and sums of exponential distributions and cannot be cal-
culated explicitly. It is approximated by simulating data
from the mixture model with corresponding exponential
distributions on the tree edges and then averaging all times
at which a specific pattern xi was observed. For a reli-
able estimate, at least 106 simulation runs are required [3].
Confidence intervals for GPS values can be obtained with
compute intensive bootstrap calculations [5]. All these
methods are available in the R package Rtreemix [10].

2.3 Cox Proportional Hazards Model

We are interested in evaluating the significance of a rela-
tionship between genetic progression scores and survival
times. The standard established model for this task is
the Cox proportional hazards regression model, where the
hazard ratio of two patients with different covariate vectors
is modelled to be constant over time. Here, the covariate
of interest is the progression score, in our case either the
count statistic or the GPS. Confounding variables like age
or tumour size can be added as additional covariates in the
model. In the following, we briefly introduce the standard
Cox approach; for details see [11].

Let T be a nonnegative continuous random variable
that describes the time until occurrence of an event, i.e.,
in this context the time until death or tumour recurrence.
Its distribution can be characterized by the survival time
S(t)= 1−F (t)=P (T > t), where S(t) is the probability
that the event of interest happens after time point t.
Survival times are often (right-)censored such that it is
only known that the survival time exceeds a random time
point tc. Thus survival times are often modelled within a
hazard rate framework. The hazard rate λ(t) describes the
instantaneous failure rate at time point t, given the event
has not been observed at t, and is related to the survival
function by

h(t) = lim
Δt→0

P [t ≤ T < t+Δt | T ≥ t]

Δt
=

f(t)

S(t)
(9)

The Cox model [8] is a semiparametric regression
model for describing the influence of a covariate vector
Z =(Z1, . . . , Zp) on the hazard rate. In its basic version,
the hazard rate is modelled as a combination of a baseline

hazard rate and a time-independent factor containing the
covariates:

h (t | Z) = h0(t) exp (β
′Z) = h0(t) exp

(
p∑

k=1

βkZk

)
(10)

where β=(β1, . . . , βp) has to be estimated from the data
and βk describes the strength of the influence of covari-
ate k on the hazard rate. For two patients with different
covariate vectors Z and Z∗, the hazard ratio is given by

h(t | Z)

h(t | Z∗)
=

h0(t) exp

[
p∑

k=1
βkZk

]
h0(t) exp

[
p∑

k=1
βkZ∗

k

] = exp

[
p∑

k=1

βk(Zk − Z∗
k)

]

(11)

and thus independent of the time. The Cox model allows
simultaneous integration of continuous and categorical co-
variates. For the special case of a univariate covariate Z,
we define the hazard ratio HR as the relative risk change
when the covariate is changed by 1 unit:

HR =
h (t | Z + 1)

h (t | Z)
= exp(β) (12)

One standard approach for testing the global null hypoth-
esis H0 : β=β0 is the Wald test (cf. [11], p. 254). The test
statistic is given with

χ2
Wald = (β̂ − β0)

′I(β̂)(β̂ − β0)

where β̂ and I(β̂) are the maximum-likelihood estimates
for β and the Fisher information matrix. Under the
null hypothesis H0, the test statistic is asymptotically χ2-
distributed with p degrees of freedom, see [11] for details.

3. Simulation Study for Sample Size Estimation

In recent studies it was demonstrated that the GPS is
a highly significant prognostic marker for cancer sur-
vival [3], [7]. The GPS is a significant covariate in a Cox
model even conditioned on adjustment for established clin-
ical markers such as, the Gleason score for prostate cancer.
However, in recent new analyses regarding gliomas (a ma-
lign type of brain cancer) with less than 40 uncensored
cases in the patient cohort, the sample size was too low
for confirming the relevance of the GPS as a prognostic
factor [6] (data not shown).

These findings raise the question how many patients
are required in such a study to detect a (true) relationship
between GPS and survival time? In Section 3.1, we
introduce a new simulation study answering this question.
Next, with the scenarios described in Section 3.2, we
want to analyse the effect of sample size if the true data-
generating progression model is the independence model
and the progression score is the count statistic. Finally, we
compare the numbers of required samples when the model
is misspecified, i.e., when either the mixture model is the
true model and the count statistic is calculated from the
data as progression measure or the independence model is
the true model and the GPS is calculated from the data.
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Figure 3. Schematic description of the simulation setup. Running 1,000 iterations, for a fixed number of events l, sample size
N and hazard ratio HR, we estimate the power by the mean number of rejected hypothesis.

3.1 Simulation Setup for Evaluating the Perfor-
mance of the GPS

We analyse and compare two progression models, the
oncogenetic trees mixture model M=

∑2
i=1 αkTk and the

independence model, see the following section. The latter
can be described as a star Tstar with unequal edge weights.
In both cases, the genetic events are represented by a
vertex set V . We assume that the number of genetic events
is given and fixed. Thus, in case of data sets with originally
too large numbers of events, we suppose that a certain type
of event (feature) selection has already been applied.

For assessing the relevance of the progression scores
regarding survival prediction, we plug in the estimated
GPS or count statistic, respectively, in a Cox model as
single covariate. The significance is then obtained via the
p-value of the Wald test as described in Section 2.3.

We assume that the survival time Ti of patient i is
exponentially distributed with parameter λi. Thus the
hazard rate λi of patient i is constant over time. For
modelling the relationship between progression score and
survival, we use the Cox model (10) and assume, w.l.o.g.,
h0(t)≡ 1. Let xi be the genetic pattern of patient i.
Then the hazard ratio HR (see (12)) connects the survival
parameter λi with the progression score in the following
way:

λi = h(t | GPS(xi))
(10)
= h0(t) · exp

(
β ·GPS(xi)

)
(12)
= 1 · exp

(
ln(HR) ·GPS(xi)

)
= HRGPS(xi) (13)

Our basic default simulation setup is visualized in
Fig. 3 and defined as follows:
1. Draw at random a mixture model M=

∑2
i=1 αkTk

with l+1= |V | events from a specified model class (see
details below).

2. Draw a sample of size N from the model.
3. Compute for each genetic pattern xi its genetic pro-

gression score GPS(xi)=EM(W (xi)).
4. Simulate for each patient i a corresponding survival

time from an exponential distribution with parameter
λi =HRGPS(xi), see (13).

5. Calculate the estimate M̂=
∑2

i=1 α̂kT̂k from the sam-
ples obtained in step 2.

6. Compute the estimated GPS values ĜPS(xi)=
EM̂(W (xi)).

7. Fit a Cox proportional hazard model with survival
times from step 4 as response and estimated GPS val-
ues from step 6 as single covariate. Then test the hy-
pothesis H0 : β=0 versus H1 : β 	=0 with significance
level α=0.05.
For each set of parameters {HR, N, l} we apply 1, 000

iterations of this simulation. We then estimate the power
ϕ{HR,N,l} of detecting the relevance of the GPS by count-
ing the number of rejected null hypothesis. There is no
analytical way of determining the sample sizes. Although
several methods exist for sample size calculations for Cox
regression models with single continous covariates [12], in
our special case the GPS always has to be simulated. For
any combination N, l and for HR=1, the expected value
for rejecting the null hypothesis β=0 is equal to α.

The model space from which random models are drawn
in step 1 of the simulation setup is characterized by the
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Figure 4. Reading out the required sample sizes N80 and
N90 to achieve 80% and 90% power, respectively.

number of events l, the mixture parameters α1 and α2 and
the conditional edge probabilities p(u, v). To evaluate the
influence of the number of genetic events in the model,
we choose several values of l varying from 4 to 15. With
fixed l, the topology of a single tree can be generated by
randomly choosing a Prüfer code [13] and translating it
in the corresponding tree. The mixture parameters α1

and α2 are set to 5% and 95%, respectively, corresponding
to a noise level of 5% which is common in statistical
analyses. Conditional edge weights p(u, v) are drawn
independently from a uniform distribution in the interval
[0.2, 0.8], following [14]. These parameter choices are in
agreement with those in previous publications [5], [14].
Evaluations with modifications of these parameters did not
change the overall conclusions [6] (data not shown).

We want to determine the sample size required to de-
tect a certain relationship between progression score and
survival time. The strength of the true relationship is
determined by the hazard ratio (12). We select critical
interesting power levels 80% and 90% and denote the corre-
sponding sample sizes with N80 and N90, respectively. Be-
cause one cannot directly compute these sample sizes, we
estimate them from simulated power curves as follows. We
approximate the power curve by smoothing the power esti-
mates obtained on a grid around the expected sample size
values, see Fig. 4. In this plot, each point corresponds to
the percentage of rejected null hypotheses of 1,000 simula-
tions following the setup depicted in Section 3.1. Smooth-
ing is performed with the smoothing.spline function in
R where the smoothing parameter is chosen automatically
by cross-validation. Visual inspection confirmed adequate
approximations in all cases.

For all computations of the simulation study, the free
available statistic software R was used [15]. Functions
for generating mixture models and for computing GPS
values were provided by the R package Rtreemix [10] in
version 1.8.0. Cox proportional hazard models and Wald
tests were computed with the R package survival [16] in
version 2.35-8.

3.2 Simulation Setup for Comparing Mixture
Model and Independence Model

In this section, we introduce the setup for comparing
a trees mixture model with corresponding GPS and an
independence model with corresponding count statistic.
In all cases, we are interested in comparing sample sizes

needed to detect an association between progression score
and survival time.

In the first scenario, the true model is a mixture model,
in agreement with step 1 of the simulation algorithm
presented in Section 3.1. Here, in addition to running
the standard algorithm, we modify steps 5–7. We skip
steps 5 and 6 and replace in step 7 the GPS as covariate
in the Cox model with the count statistic (4), i.e., the
number of events that has occured. For a selected set of
hazard ratios and model classes, we calculate the sample
size N count

90 needed to achieve a power of 90% for the
Wald test to confirm a relationship between the number of
events and survival. Here, N count

90 can be compared with
N90, the corresponding number when fitting the correct
mixture model. Obviously, fitting the correct model and
using the GPS will yield smaller sample sizes than simply
using the count statistic. The question is, how relevant
this reduction in sample size is?

In the second scenario, we assume that the true
model is not the mixture model but the independence
model. In this case, in step 1 of the simulation algorithm
(Fig. 3), instead of drawing at random a mixture model
M=

∑2
i=1 αkTk we draw a star model Tstar. Here, each

edge in the progression model is starting from the root,
where edge weights are allowed to be unequal. Accord-
ingly, in this setup, in step 4 of the algorithm, we replace
the GPS with the count statistic. Thus, here we link the
survival time of the patients to the count statistic. Then
we fit once a mixture model with GPS as progression score
and once an independence model with count statistic as
score to the simulated data and again evaluate the required
sample sizes.

With the simulation scenarios described above, we are
able to compare the performance of the GPS and the
count statistic. After running these simlations, we receive
the required sample sizes for the following four cases: In
the first two cases the underlying true model is the trees
mixture model and the derived GPS is linked with the
survival times. Once the GPS is calculated from simulated
data and plugged into the Cox model, and once the count
statistic is used. In the other two cases, the underlying
true model is the independence model and the number of
events is linked to survival. These comparisons also allow
us to analyse the performance of the progression scores
when the underlying models are misspecified.

4. Results

In this section, we present the estimated sample sizes
needed for detecting a given relationship between the pro-
gressions scores and the survival times, for each case of the
different simulation scenarios described in Section 3. First,
in Section 4.1, the estimated sample sizes in case of un-
derlying trees mixture models and the GPS as predicting
variable are shown. This refers to the default simulation
scenario from Section 3.1. Next, in Section 4.2, we consider
other scenarios as described in Section 3.2. Here, we com-
pare estimated sample sizes when either the GPS or the
count statistic is used for predicting survival. Particularly,
we point out the changes in required sample size in the case
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of model misspecification. In this section we determine
sample sizes needed to achieve at least a power of 90%.

Note that all sample sizes are estimated on the basis
of fully uncensored survival samples. For a pre-specified
proportion of censored observations, the estimators of the
sample sizes can easily be adapted. In this case, the
estimators simply have to be divided by the expected
proportion of uncensored observations [17].

4.1 Sample Size Estimators for Mixture Models

Table 1 shows estimated sample sizes for several combina-
tions of hazard ratio HR and number of events l in the trees

Table 1

Required Sample Sizes N80 (N90) to Achieve a Power
of 80% (90%), Dependent on the True Hazard Ratio

and the Number l of Events in the Model

l Hazard Ratio HR

1.8 1.6 1.4 1.2 1.1

4 46 (75) 64 (99) 106 (160) 290 (432) 1025 (1489)

5 43 (60) 56 (83) 94 (138) 256 (403) 899 (1354)

6 39 (57) 54 (78) 89 (126) 266 (397) 935 (1324)

7 41 (56) 53 (78) 92 (127) 259 (373) 917 (1345)

8 41 (58) 55 (78) 93 (130) 270 (389) 929 (1362)

9 43 (59) 60 (80) 92 (135) 282 (400) 934 (1382)

10 42 (59) 59 (82) 98 (138) 283 (412) 949 (1395)

∅ 42 (61) 57 (83) 95 (136) 272 (401) 941 (1379)

Figure 5. Required sample sizes for a hazard ratio of 1.6 and for varying numbers of events l.

mixture model. For example, for l=6 events and a true
hazard ratio of HR=1.4, to confirm a significant relation-
ship between GPS and survival time with a power of 80%
and 90%, around 89 and 126 patients are needed, respec-
tively. Repeating the simulation with identical parameter
sets provides a variance of the estimates. We found that
for a hazard ratio of 1.6, the sample sizes N80 and N90 vary
at most by 2. For the smallest considered hazard ratio of
1.2, the largest observed difference between two simulation
was 8. This relatively small variance can also be deduced
from the fitted power curve in Fig. 4.

In Fig. 5 we illustrate the influence of the number of
events on the required sample size, for a fixed hazard ratio
of 1.6. It is striking that with l=4 events, the required
sample size is relatively high, in models with l=6, 7, 8
events the GPS has the best performance, and from 8
events onwards sample size increases again. However, the
larger the hazard ratio is, the less pronounced this effect
can be observed. At large, the higher the model complexity
is (especially from l=8 onwards) the more samples are
needed to obtain 80% and 90% power. The contrary
behaviour for extremely small numbers of events (l=4)
can be explained as follows. The second component T2
from a randomly generated model with l=4 events is often
similar to a star. As a result, for small sample sizes, the
estimated topologies differ considerably from the true ones.
For larger sample sizes, the underlying true topology can
be reconstructed more accurately [5].

The hazard ratio HR is a more critical parameter than
the number of events. For example, when HR decreases
from 1.4 to 1.2, the sample size increases approximately
by a factor of 3, from around 100 to around 300. Figure 6
shows the required sample sizes depending on the hazard
ratio, for models generated with l=6 events. The sample
size decreases almost exponentially with increasing hazard
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Figure 6. Required sample sizes for l=6 events and for
varying hazard ratio HR (log scale).

ratio. Roughly, to achieve a power of 90% instead of 80%,
the sample size has to be multiplied by 1.4.

4.2 Comparison between Mixture Model and Inde-
pendence Model

Table 2 shows the estimated sample sizes N count
90 and N90.

In this section, we consider only a power of 90%. The
numbers in Table 2 can be interpreted in the following way.
If the genetic events are generated from an oncogenetic
trees mixture model with l=6 events and survival is linked
with GPS, then we need a sample size of approximately
126 to detect a hazard ratio of 1.4, when fitting the correct
model. Fitting the wrong model, which in this case means
just calculating the count statistic for every sample, leads
to an increase in sample size of 26% to 159. Conversely, if
the true model is the independence model and survival is
linked to the number of events, then 17% more samples are
required (96 instead of 82) when using the GPS instead of
the count score.

In Table 2 it is striking that comparing trees mixture
models with l=6 and l=10 events, the increase in required

Table 2
Sample Size N90 and N count

90 (in brackets) to Reach a Power of 90%

True Model

l Mixture of Trees/GPS Independence/Count

HR 1.2 1.4 1.6 1.2 1.4 1.6

6 397 (485) 126 (159) 78 (94) 312 (256) 96 (82) 55 (46)

10 412 (576) 138 (195) 82 (117) 181 (159) 62 (53) 37 (31)

15 516 (809) 182 (291) 102 (171) 124 (107) 46 (38) 31 (23)

sample size is far less pronounced for the GPS compared
to the count statistic. For the GPS, sample size increases
by 3–9%, for the count statistic by 19–24%. Comparing
models with l=10 and l=15 events, the increase in sample
size is about 24–32% for the GPS and 40–49% for the count
statistic. This results in a benefit of sample sizes of about
40% and 60%, respectively, when using the GPS instead of
the count statistic. Thus, the more complex the generating
mixture model is, the more sample size can be saved by
using the GPS.

If the independence model is the generating model, we
observe a different behaviour. As expected, in indepen-
dence models, larger numbers of events are beneficial for
discriminating between progression states. In this case,
more events reflect more information. For a large number
of events, the variance of the observed count statistic of a
specific patient is small, relative to the interval of possibly
observable values. However, in contrast to the case of an
underlying mixture model, the relative difference in sample
size between the modelling approaches is not increasing
when the number of events increases. Here, the differ-
ences in power for the count statistic and for the GPS are
stable; the advantage of the count statistic varies around
20%. As a matter of fact, the count statistic does not
benefit as much from more events in the model as the GPS
did in case of a true underlying mixture model. Further-
more, in all cases, the absolute numbers of required sample
size are considerably smaller than for the trees mixture
model.

For a relatively large hazard ratio of HR=1.6, the ab-
solute differences in sample size are rather small. However,
for smaller values (e.g., HR=1.2), the required samples
sizes differ in a three-digit range, when the underlying
true model is the mixture model. In cancer studies, such
small hazard ratios are often observed and clinically rele-
vant. In such cases the advantage of the GPS is clearly
important. For the independence model, see right side of
Table 2, the advantage of the count statistic is not as dis-
tinct, and in general the absolute numbers are also consid-
erably smaller than for the trees mixture model. Thus, we
suggest to favour the advanced GPS-based modelling ap-
proach, especially in situations with limited model knowl-
edge. The advanced model is clearly superior for true tree
models and only slightly inferior for true independence
models.
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5. Conclusion

In this paper, we presented a simulation study for eval-
uating the required sample sizes for detecting clinically
relevant differences between patient cohorts with different
cancer progression states. Progression states were deter-
mined by first fitting progression models and then deriving
univariate progression scores from these models. Clinical
relevance was determined by testing the significance of
these scores in univariate Cox models via Wald tests. More
precisely, we compared two different scenarios of cancer
progression. The independence model assumes indepen-
dence between events and is an extremely simple approach.
The oncogenetic trees mixture model is far more complex.
It was investigated and applied for cancer progression be-
fore and shown to represent well disease progression for
various cancer types.

It turned out that misspecification of the model results
in a larger increase of sample size if the data are generated
from the complex model, compared to the case when they
are generated from the simple model. For models based
on 6 genetic events, about 20% more samples are needed
if both data are generated from the simple model and
progression scores are fitted with the complex model, and
vice versa. However, for models with larger numbers of
events, the complex model has a distinct advantage. For 10
genetic events, the saving in sample size is slightly above
40% for the true complex model and under 20% for the
true simple model. The more events we have in the model,
the larger is the difference in sample size. For a model
based on 15 events, the saving is up to 67% for the GPS
and around 20% for the simple model.

Another important observation is that the required
sample size is always smaller if the simple model is the true
data-generating model. Thus the relative advantage when
fitting the correct simple model translates into a smaller
advantage in terms of absolute numbers. A common guide-
line for model selection is to use the less complex model
in case of limited model knowledge, to avoid overfitting of
the model to the data at hand. In our scenario, this state-
ment does not apply. In general, the absolute numbers
of required sample size obtained in our simulations favour
the oncogenetic trees mixture model with corresponding
GPS, even in case of little model knowledge, as the power
loss due to misspecification is considerably larger when
fitting the simple model. Thus, a general recommendation
for modelling disease progression in practical oncogenetic
studies is to prefer a mixture trees model over a simple tree
model.

It is important to note that the model complexity
depends on the specific shape of the model. For example,
for an oncogenetic trees mixture model with a non-uniform
star and a tree, the effective dimension of the model can
already be different from the number of parameters. For a
detailed discussion of the complexity of these models, see
[14]. However, in our simulations, this was not relevant as
the true models were random samples from the space of all
possible models.

Several alternative approaches for modelling cancer
progression exist, e.g., conjunctive Bayesian networks

(CBN) [18]. In these models, more than one precursor
event is allowed, and a fraction of data deviating from the
CBN can be explained by observation errors. Here, we
restrict to tree models and mixtures of oncogenetic trees.
However, future research regarding competing modelling
approaches can be helpful. A comprehensive overview of
such disease progression models can be found in [19].
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