
International Journal of Computational Bioscience, Vol. 1, No. 1, 2010

CLUSTERING GENE EXPRESSION

DATA USING AN EFFECTIVE

DISSIMILARITY MEASURE1

R. Das,∗ D.K. Bhattacharyya,∗ and J.K. Kalita∗∗

Abstract

This paper presents two clustering methods: the first one uses a

density-based approach (DGC) and the second one uses a frequent

itemset mining approach (FINN). DGC uses regulation information

as well as order preserving ranking for identifying relevant clusters

in gene expression data. FINN exploits the frequent itemsets and

uses a nearest neighbour approach for clustering gene sets. Both

the methods use a novel dissimilarity measure discussed in the

paper. The clustering methods were experimented in light of real-

life datasets and the methods have been established to perform

satisfactorily. The methods were also compared with some well-

known clustering algorithms and found to perform well in terms of

homogeneity, silhouette and the z -score cluster validity measure.

Key Words

Gene expression, dissimilarity measure, clustering, density based,

frequent itemset mining, nearest neighbour

1. Introduction

A microarray experiment compares genes from an organ-
ism under different developmental time points, conditions
or treatments. For an n condition experiment, a single
gene has an n-dimensional observation vector known as
its gene expression profile. Clustering genes having sim-
ilar expression profiles is an important research field [1].
Two genes having similar expression profiles have similar
functions and/or are co-regulated. To identify genes or
samples that have similar expression profiles, appropriate
similarity (or dissimilarity) measures are required. Some
of the commonly used distance metrics are: Euclidean
distance, Pearson’s correlation coefficient and Spearman’s
rank-order correlation coefficient [1]. Euclidean distance

∗ Department of Computer Science and Engineering, Tezpur
University, Tezpur, India; e-mail: {rosy8, dkb}@tezu.ernet.in

∗∗ Department of Computer Science, University of Colorado at
Colorado Springs, Colorado, USA; e-mail: kalita@eas.uccs.edu

(paper no. 210-1014)
1The department is funded by UGC’s DRS- Phase I under
the SAP.

imposes a fixed geometrical structure and finds clusters
of that shape even if they are not present. It is scale
variant and cannot detect negative correlation. Euclidean
distance gives the distance between two genes but does not
focus on the correlation between them. Pearson’s correla-
tion, on the other hand, retains the correlation information
between two genes as well as the regulation information.
However, as it uses the mean values while computing the
correlation between genes, a single outlier can aberrantly
affect the result. Spearman’s rank correlation is not af-
fected by outliers, however there is information loss w.r.t.
regulation because it works on ranked data. Thus, it can
also be observed that choosing an appropriate distance
measure for gene expression data is a difficult task. In this
work, we use our dissimilarity measure which handles the
above-mentioned problems and is reported in [2].

1.1 Gene Expression Data Clustering Approaches

Data mining techniques have been widely used in the
analysis of gene expression data. According to [1], most
data mining algorithms developed for gene expression data
deal with the problem of clustering. Clustering identi-
fies subsets of genes that behave similarly along a course
of time (conditions, samples, etc.). Genes in the same
cluster have similar expression patterns. A large num-
ber of clustering techniques have been been reported for
analyzing gene expression data, such as partitional clus-
tering such as K-means [3], Fuzzy c-means [4] and self
organizing maps (SOMs) [5], hierarchical clustering (un-
weighted pair group method with arithmetic mean (UP-
GMA) [6], self-organizing tree algorithm [7]), divisive cor-
relation clustering algorithm (DCCA) [8], density-based
clustering [9], [10], shared nearest neighbour-based clus-
tering [11], Model-based methods such as SOMs [5], neu-
ral networks [12], graph-theoretic clustering (cluster affin-
ity search techniques (CAST) [13], cluster identification
via connectivity kernels (CLICK) [14], E-CAST [15]) and
quality threshold clustering [16], genetic algorithms (GAs)-
based clustering techniques such as [17], [18]. In [19],
a two-stage clustering algorithm for gene expression data
(SiMM-TS) is presented. A novel multi-objective genetic

55

fuzzy clustering followed by support vector machine classi-
fication is presented in [20]. The technique has been found
to detect biologically relevant clusters and is dependent on
proper tuning of the input parameters.

1.2 Discussion

In this section, we have reviewed a series of approaches to
gene clustering. Different clustering algorithms are based
on different clustering criteria and the performance of each
clustering algorithm may vary greatly with different data
sets. For example, K-means or SOMmay outperform other
approaches if the target data set contains few outliers and
the number of clusters in the data set is known, while
for a very noisy gene expression data set in which the
number of clusters is unknown, CAST, QTC or CLICK
may be a better choice. Also, the result of clustering is
highly dependent on the choice of an appropriate similarity
measure.

From the above discussion, it can be concluded that
choosing an appropriate clustering algorithm together with
a good proximity measure is of utmost importance. In
this paper, we introduce two methods for clustering gene
expression data. The first method (DenGeneClus, DGC)
clusters the genes from microarray data with high accu-
racy by exploiting our dissimilarity measure (DBK) [2]
and it can also be found to be robust to outliers. The
second method (frequent itemset mining approach FINN)
attempts to find finer clusters over the gene expression
data by integrating nearest neighbour clustering technique
with frequent itemset discovery. The advantage of FINN
is that it produces finer clustering of the dataset. The
advantage of using frequent itemset discovery is that it
can capture relations among more than two genes while
normal similarity measures can calculate the proximity
between only two genes at a time. We have tested both
DGC and FINN on several real-life datasets and the re-
sults have been found satisfactory. The z-score measure
for cluster validity was used to compare our methods with
well-known algorithms such as k-means, UPGMA, CLICK,
SOM and DCCA and the score obtained by our methods
were much higher. Next, we introduce DGC algorithm
which is developed based on density-based clustering.

2. DGC

DGC works in two phases which are discussed next.

2.1 Phase I: Normalization and Discretization

The gene expression data is normalized to mean 0 and
standard deviation 1. Expression data having low variance
across conditions as well as data having more than three
fold variation are filtered. The discretization process takes
into account the regulation pattern, i.e., up- or down-
regulation in each of the conditions for every gene. Let G
be the set of all genes and T be the set of all conditions.
Let gi ∈G be the ith gene, tj ∈T be the jth condition
and �i,j be the expression value of gene gi at condition tj .
An example of a discretized matrix obtained from Fig. 1

is shown in Fig. 2. The regulation pattern is computed
across conditions based on the previous condition value
other than the first condition. For the first condition, t1,
its discretized value is directly based on �i,1. Discretizing
is done using the following two cases:

Case 1: For Condition t1 (i.e., the First Condition)
The discretized value of gene gi at condition, t1.

ξi,1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if �i,1 = 0

1 if �i,1 > 0

2 if �i,1 < 0

Case 2: For the Conditions (T − t1)
The discretized value of gene gi at tj :

ξi,j+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if �i,j = �i,j+1

1 if �i,j < �i,j+1

2 if �i,j > �i,j+1

where ξi,j is the discretized value of gene gi at condition
tj (j=1, ..(T − 1)). Each gene will now have a regulation
pattern (℘) of 0, 1 and 2 across the conditions or time
points. Once ℘ of each gene is obtained, Phase II, i.e., the
clustering process is initiated.

Figure 1. Example dataset.

Figure 2. Discretized matrix.

56

2.2 Phase II: Clustering of Genes

The clustering of genes is initiated with the finding of
the maximal matching genes with respect to regulation
pattern.

2.2.1 A Density-Based Notion of Clusters

Clusters consist of genes having similar expression patterns
across conditions, while noise genes are those that do not
belong to any of the clusters. The basic idea behind
recognizing a cluster is that within each cluster we have a
typical density of genes having similar expression patterns
which is considerably higher than that outside the cluster.
Furthermore, the density within the areas of noise is lower
than the density in any of the clusters. In the following, we
try to formalize this intuitive notion of clusters and noise
in a database G of genes. The key idea is that for each
gene of a cluster, the neighbourhood has to contain at least
δ number of genes which has similar expression pattern
(regPattern). The shape of a neighbourhood is determined
by the choice of a distance function for two genes gi and
gj , denoted by D(gi, gj). Note that our approach works
with any distance measure and hence there is provision
for selecting the appropriate similarity function for some
given application. In this paper, we give results for our
own dissimilarity measure [2] which has been discussed in
detail in the previous section.

2.2.2 Basis of the Clustering Approach

The three fundamental bases on which the clustering tech-
nique (DGC) is designed are:

(i) RegulationMatching : For a particular gene gi, the
maximal matching regulation pattern (MMRP) is found.
All those genes having the same MMRP w.r.t. gi are
grouped into the same cluster.

(ii) Order Preserving : We follow order preservation
based on [21] in the following way. For a condition set
t⊂T and a gene gi ∈G, t can be ordered in a way so that
the expression values are ordered in ascending order. By
order ranking, we search for the expression levels of genes
within a cluster which induce ordering of the experiments
(conditions). Such a pattern might arise, for example, if the
experiments in t represent distinct stages in the progress of
a disease or in a cellular process and the expression levels
of all genes in a cluster vary across the stages in the same
way [21].

(iii) Proximity : The proximity between any two genes
gi and gj is given by D(gi, gj) where D is any proximity
measure like Euclidean distance, Pearson’s correlation, etc.

The identification of clusters is based on the following
definitions. The definitions are given based on the density
notion available in [22].

Definition 1. Matching: Let ℘gi and ℘gj be the reg-
ulation patterns of two genes gi and gj. Then, the
matching (M) between gi and gj will be given by
the number of agreements (No_Agreements) (i.e., the
number of condition-wise common regulation values

excluding condition 1) between the two regulation pat-
terns, i.e.,

M(gi, gj) = No_Agreements(℘gi , ℘gj).

Definition 2. Maximal Matching: Gene gi is referred
to as maximally matched (MM) with gene gj if the
number of agreements between (℘gi, ℘gj) is ≥ δ where
gj ∈G−{gi} and G are sets of genes.

Definition 3. MMRP: If a gene gi maximally matches
with say, gene gj, then the regulation pattern ℘′

gi and
℘′
gj formed by taking the subset of conditions where both

℘gi and ℘gj match is referred to as the MMRP for gi
and gj.

MMRP of genes gi and gj is computed as follows:

℘′
gi = ℘′

gj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if ℘gi,t = ℘gj,t = 1

0 if ℘gi,t = ℘gj,t = 0

2 if ℘gi,t = ℘gj,t = 2

x otherwise.

Here (t=2, 3, · · · , T − 1) refers to the conditions.
Each gene will have a rank which will give the per-

mutation order of that gene across conditions t⊂T . The
rank is calculated according to the expression values of
a gene across conditions, i.e., the elements of the rank
pattern are given by their ranking in ascending order of
their expression values. The rank of a gene is calculated
as follows: (i) For a gene gi, find ℘′

gi and (ii) Rank gi in
ascending order according to the expression values where
℘′
gi,t �=x. For ease of understanding of the rank computa-

tion, the example given in Fig. 1 is referred. Here, the rows
represent the genes g1, g2, · · · , g6 and the columns repre-
sent the corresponding conditions (excluding condition 1
as stated before),

℘g1 = 2 0 1 1 2 ℘g2 = 2 0 1 1 2

℘g3 = 1 2 2 1 0 ℘g4 = 1 0 2 1 0

℘g5 = 2 0 1 1 2 ℘g6 = 1 0 1 1 2.

Matching among pairs of genes are:

M(g1, g2) = 4 M(g1, g3) = 1 M(g1, g4) = 2

M(g1, g5) = 4 M(g1, g6) = 4 M(g2, g3) = 1

M(g2, g4) = 2 M(g2, g5) = 4 M(g2, g6) = 4

M(g3, g4) = 3 M(g3, g5) = 1 M(g3, g6) = 1

M(g4, g5) = 2 M(g4, g6) = 2 M(g5, g6) = 4.

Suppose δ=3, then Maximal Matching of pairs of
genes are:

MM(g1, g2) = 4 MM(g1, g5) = 4 MM(g1, g6) = 4

MM(g2, g5) = 4 MM(g2, g6) = 4

MM(g3, g4) = 3 MM(g5, g6) = 4

57

Thus, MMRP is:

℘′
g1 = 0 1 1 2 ℘′

g2 = 0 1 1 2

℘′
g5 = 0 1 1 2 ℘′

g6 = 0 1 1 2

℘′
g3 = x 2 1 0 ℘′

g4 = x 2 1 0.

From the above example, it is clear that the MMRP of
g1, g2, g5, and g6 are same, as well as the MMRP of g3 and
g4 are same.

Genes 1, 2, 5, and 6 have the MMRP over conditions
2, 3, 4, 5. Rank order over these four conditions are
computed w.r.t. their expression values (�i,j , i=1, 2, 5, 6
and j=2, 3, 4, 5, where i refers to gene i and j refers to
condition j) and ranks as follows:

Rank(g1) = 1 3 4 2 Rank(g2) = 1 2 3 4

Rank(g5) = 1 3 4 2 Rank(g6) = 1 2 3 1.

Similarly, genes 3 and 4 can be found to have the
MMRP over Conditions 3, 4, 5 and ranks obtained are as
follows:

Rank(g3) = 1 2 2 Rank(g4) = 1 2 2.

Definition 4. θ-neighbourhood: The θ-neighbourhood
of a gene gi, denoted byNθ(gi) is defined by,Nθ(gi)= gi ∈
G, such thatD(gi, gj)≤ θ, where, D may be any distance
measure such as Euclidean, Pearson’s correlation, our
dissimilarity measure, etc.

Definition 5. Core Gene: A gene gi is said to be a core
gene w.r.t. θ if there is at least one gene gj such that: (i)
gj ∈Nθ(gi), (ii) |Nθ(gi) | ≥σ, (iii) Rank(gi)≈Rank(gj)
and (iv) ℘′

gi ≈℘′
gj .

where σ is a user-defined threshold for the minimum
number of genes in the θ-neighbourhood of gi.

Definition 6. Directly Reachable Gene: A gene gi is
directly reachable from gene gj w.r.t. θ if (i) gj is a
core gene, (ii) gi ∈ Nθ(gj) and (iii) ℘′

gi ≈℘′
gj .

Directly reachable relation of a gene is symmetric for
pairs of core genes. However, in case of a pair of core and
non-core genes, it may not be valid.

Definition 7. Reachable Gene: A gene p is said to
be reachable from gene q w.r.t. θ if there is a chain
of genes P1, P2, · · · , Pn, where P1 = q, Pn = p such that
Pi+1 is directly reachable from Pi.

Thus, reachability relation is a canonical extension of
direct reachability [22]. This relation is transitive, but is
not symmetric. However, over this gene expression domain
reachability is symmetric for core genes.

Definition 8. Density Connected Genes: A gene gi is
said to be connected to another gene gj if both gi and
gj are reachable from another gene gk w.r.t. θ.

Connectivity is a symmetric relation. For reachable
genes, the relation of connectivity is also reflexive.

Definition 9. Cluster: A cluster C w.r.t. θ is a non-
empty subset of G and | C | ≥σ satisfying the following
conditions: (i) ∀gi, gj if gi ∈C and gj is reachable from gi
w.r.t. θ then, gj ∈C(reachability) and (ii) ∀gi, gj ∈C : gi
is density connected to gi w.r.t. θ (connectivity).

Therefore, a cluster can be defined as a set of reachable
and/or connected genes.

Definition 10. Noise: Let C be the set of clusters of
the dataset G w.r.t. parameter θ. Noise is defined as
the set of genes not belonging to any cluster Ci ∈C. In
other words, noise= {gi ∈ G | ∀i : gi /∈ Ci}. Also, a gene
gi is said to be a noise gene if it does not satisfy the
θ-neighbourhood condition, i.e., | Nθ(gi) | <σ.

Note that in this paper, any cluster Ci w.r.t. θ contains
at least two genes (i.e., σ=2) to satisfy the core gene
condition.

cluster_creation()
Precondition: All genes in DG are unclassified

FOR all gi ∈ G do
Compute ℘(gi);

END FOR
FOR i = 0 to G do

IF gi.classified �= CLASSIFIED then
Compute ℘′(gi) & Rank(gi);
IF get_core(gi) == TRUE then

expand_cluster(gi, cluster_id);
cluster_id = cluster_id + 1;

END IF
END IF

END FOR

Figure 3. Algorithm for Cluster Formation.

2.2.3 Finding the Maximal Coherent Clusters

Cluster identification starts with an arbitrary gene and
finds the MMRP (℘′) with the other unclassified genes
(Fig. 3). For regulation pattern matching, two genes are
matched w.r.t. the regulation across the conditions starting
from Condition 2. Condition 1 is not considered because it
has no previous condition. If the arbitrary gene is a core
gene then cluster expansion proceeds with this core gene
and finding reachable and connected genes from this core
gene. All reachable and connected genes in a particular
iteration of the clustering process are grouped into the
same cluster. The process then recursively continues until
all genes are classified. This expansion process is given in
Fig. 4. Here, get_core(gi) is a function which checks the
core condition as stated in Definition 5. Assuming G is a
set of genes and C is a set of clusters, following lemmas are
trivial to DGC. Intuitively they state, given the parameter
θ we can discover a cluster in a two-step approach. First,
an arbitrary gene is chosen as the seed which satisfies the
core gene condition. Second, all genes reachable from the
seed are retrieved. These two steps result in a cluster
containing the seed.

Lemma 1. Let gi be a core gene in G in Ci (where
Ci ∈C) and let gj be any gene ∈ Ci. Then gj is reachable
from gi w.r.t. θ.

58

expand_cluster(gi, cluster_id)

IF gi.classified == CLASSIFIED then
RETURN;

END IF
gi.classified = CLASSIFIED;
gi.cluster_id = cluster_id;
FOR j = 0 to G do

IF gi �= gj
IF ℘′

gi
≈ ℘′

gj
&& gj ∈ Nθ(gi) then

IF get_core(gj) == TRUE then
expand_cluster(gj , cluster_id);

END IF
gj .classified = CLASSIFIED;
gj .cluster_id = cluster_id;

END IF
END IF

END FOR

Figure 4. Algorithm cluster expansion.

Lemma 2. Assume genes gi, gj ∈G and let C1, C2 be
two clusters, where gi ∈C1 and gj ∈C2, then gi and gj
are not connected.
Lemma 3. Assume gene gi ∈G and C be the set of all
clusters. If gi is a noise gene, then gi /∈C.

The following observations have been made in DGC:

Observation 1. Any core gene gi ∈Ck (where i=1, 2,
· · · ,m and Ck is a cluster) w.r.t. θ have the same MMRP
and Rank with the other core genes in Ck.
Observation 2. All genes in a cluster Ck have same
MMRP with the core gene(s) ∈ Ck.

The clustering result of DGC using our dissimilarity
measure is reported in Section A.

3. Frequent ItemsetMining andNearest Neighbour
Clustering (FINN)

FINN works in three phases. In the first phase, the gene
expression data GD is transformed into a 0–1 transaction
matrix. The second phase finds the maximal frequent
itemset using a frequent itemset mining algorithm such as
Apriori or FP-tree. The third phase is dedicated to the
task of clustering using a shared nearest neighbour-based
approach. Below, we discuss these phases in detail.

3.1 Phase I: Transformation FromGene Expression
Matrix to Transaction Matrix

The gene expression dataset is aG×T matrix of expression
values where G is the number of rows (genes) and T is
the number of columns (time points) as shown in (1).
Using DBK between the genes across time series is used to
build a G×G dissimilarity matrix for the whole dataset.
We introduce some definitions as we proceed with the
description of our method.

Definition 11. Nearest Neighbour of a gene: A gene
gi is the nearest neighbour of a gene gj if D(gi, gj)≤ θ1,
where θ1 is a dissimilarity threshold and D is our
dissimilarity measure (DBK) discussed before.

From the nearest neighbour lists, we build the G×G
gene-gene transaction matrix, TG, of zeroes and ones (2).
For each gene gi, a 0−1-pattern of size G is obtained, where
“1” is set if a gene gj is neighbour of gi and 0 otherwise, as
given in 3:

GD =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · · · · a1T
a21 a22 · · · · · · a2T
...

aG1 aG2 · · · · · · aGT

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

TG =

⎡
⎢⎢⎢⎢⎢⎢⎣

t11 t12 · · · · · · t1G
t21 t22 · · · · · · t2G
...

tG1 tG2 · · · · · · tGG

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

TG = tij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if D(gi, gj) ≤ θ1, where i = 1, 2, · · · , p;
j = 1, 2, · · · , p

0 otherwise.

(3)
Pruning
Those transactions are pruned which satisfy the following
conditions:
i. In the transaction matrix, the value of tij , where i= j
is set to zero because the same gene does not contribute
to frequent itemset generation.

ii. In the transaction matrix if for a particular row i the
value of tij across all j conditions are zero and the
same applies for column j and all i rows, then that ith
row and jth column both are discarded.
These two steps reduce the size of the transaction

matrix considerably.
Phase II now uses this matrix, TG, to calculate the

frequent itemset using FP-tree.

3.2 Phase II: Maximal Frequent Itemset Genera-
tion

In this phase, we use the FP-tree to generate the maximal
frequent itemset(s) (MFIS) at support threshold s%. The
gene-gene G×G transaction matrix, TG is fed as input
along with the user-defined support threshold to get the
frequent itemsets. The MFIS obtained from this phase
gives us the set of core genes. The identification of core
genes is done as follows:
• If only one MFIS is obtained at s% support, the genes
within that set become the set of core genes for a
particular cluster.

• If more than one MFIS is obtained at s% support and
there is a chain of genes (items) from one MFIS to the
other, the genes are merged together into the set of
core genes for a particular cluster.

• If more than one MFIS is obtained at s% support and
there is no chain of genes (items) from one MFIS to

59

the other, each MFIS will give the set of core genes for
different clusters.
This set of core genes contain the seeds for cluster ex-

pansion which gives the core clustering of the dataset. Dif-
ferent clustering approaches such as hierarchical or density-
based clustering can be applied on these core genes to get
the final cluster. The next phase gives a detailed overview
of the clustering process.

The following definitions provide the foundation for
the clustering process.

Definition 12. Density of a gene: The density of a
gene gi is the number of nearest neighbours of that gene
in the gene–gene transaction matrix, TG.

Density(gi) =
G∑

j=1

tij , where tij = 1 (4)

Definition 13. Core genes: The set of core genes Cr
can be defined as the set of MFIS, i.e., the maximal
frequent itemset(s) generated by the FP-tree algorithm.
For a set of MFIS of cardinality k it is formalized into
three cases as given below. Cr is formed by either one,
two or three cases or a combination of them:

1. if k=1, Cr= {MFIS},
2. if k > 1 and MFISi

⋂
MFISj �=φ, Cr=

{⋃k
i=1 MFIS}, where j �= i, and j= k− i,

3. if k > 1 and MFISi

⋂
MFISj =φ,, Cr= {MFISi,

MFISj , · · · ,MFISk}, where j �= i, and j= k− i.
Each MFIS will give the core genes of a particular

cluster.

Definition 14. Shared Neighbours: Assume Cr=
{MFIS1, · · · ,MFISk} is the set of core genes. A gene
gk is said to be the shared neighbour of each of the
genes {ga, · · · , gm} in MFISi, i.e., sn(MFISi, gk), if it
satisfies the following:

sn(MFISi, gk) =
D(ga, gk) ≤ β ∧D(gb, gk)

≤ β ∧ · · · ∧D(gm, gk) ≤ β
(5)

where β is the shared neighbour threshold.

Definition 15. Cluster: A cluster Ci can be defined as
the set of all shared neighbours of MFISi, i.e.,

Ci =
⋃p

j=1 sn(MFISi, gj), where, sn(MFISi, gj) is
the set of p shared neighbors of {ga, · · · , gm}∈MFISi.

Definition 16. Noise genes: A gene gk is said to be
a noise gene, if it has no nearest neighbour gene gm,
where gm ∈ G.

The following lemmas provide the foundation of FINN.

Lemma 4. A gene belonging to an MFIS will have
nearest neighbors to it.

Proof: A gene gj can be a member of MFISi iff gj is
frequent over TG at s% support. Therefore, gj has nearest
neighbours to it and hence the proof. �

Lemma 5. Seeds selected for cluster expansion cannot
be noise.

Proof: Assume gij be a seed and be the jth gene in
the ith MFIS, i.e., gij ∈MFISi ∈Cr. Then gij will have
nearest neighbours to it according to Lemma 4. Again,
according to Definition 16, a gene with nearest neighbour
cannot be a noise gene and hence the proof. �

3.3 Phase III: Clustering

We have used a shared neighbour approach to expand the
cluster from the core clusters to obtain the final clusters.
The clustering procedure is initiated from the core genes
identified in Phase II. First, these genes are classified. The
set of core genes are classified using either of the following
cases:

1. If Cr= {MFIS} and MFIS= {g1, g2, · · · , gx} then
Classify {g1, g2, · · · , gx} with the same cluster_id.

2. If Cr= {MFIS1, MFIS2, · · · , MFISk} and
MFIS1 = {g11, g12, · · · , g1x}, MFIS2 = {g21, g22, · · · ,
g2y},· · · , MFISk = {gk1, gk2, · · · , gkz} then

Classify the genes corresponding to eachMFIS (i.e., say
gil

s corresponding to MFISi with same cluster_id.

For a classified MFIS of cardinality k, an arbitrary
unclassified gene g will be a shared neighbour, if g is a
nearest neighbour of each of the genes of that MFIS. A ma-
jor advantage of FINN is that it eliminates the exhaustive
neighbour search over TG. If g has dissimilarities lesser
than a given shared neighbour threshold (β) with each
of the core genes of MFIS then g is classified with the
same cluster_id as that of the core genes of that MFIS
and grouped into the same cluster. This process of cluster
expansion is iterated until there are no more genes that
can be merged into this cluster. The cluster thus obtained
gives a final cluster.

Once cluster expansion terminates, the row and col-
umn of the classified genes in the transaction matrix TG are
discarded from further consideration. This step reduces
the number of items (genes) which have to be checked for
itemset generation. The process then restarts Phase II
with the new compact transaction matrix TG.

The steps of FINN are given below:

i. Calculate the G×G dissimilarity matrix using DBK
and generate the G×G gene–gene transaction matrix.

ii. Generate the MFIS using FP-tree algorithm on TG.

iii. Classify the genes of MFISi as core genes and give
cluster_id to them.

iv. Select a gene from the nearest neighbours of the core
genes of MFISi which is a shared neighbour of each
of the core genes and classify this gene with the same
cluster_id as MFISi.

v. Repeat step iv till no more genes satisfy the shared
neighbour condition.

vi. Discard the rows and columns of the classified genes
from the gene–gene transaction matrix.

vii. Increment i and go to step iv.

viii. Repeat steps ii. through vii. till all genes in TG are
classified.

60

Table 1
Datasets Used in This Paper

Serial Dataset No. of Genes No. of Conditions Source
No.
1 Yeast diauxic shift [23] 6,089 7 http://www.ncbi.nlm.

nih.gov/geo/query
2 Subset of yeast 384 17 http://faculty.

cell cycle [24] washington.edu/kayee/cluster
3 Rat CNS [25] 112 9 http://faculty.

washington.edu/kayee/cluster
4 Arabidopsis thaliana [26] 138 8 http://homes.esat.kuleuven.be/

thijs/Work/Clustering.html
5 Subset of human fibroblasts 517 13 http://www.sciencemag.org/

serum [27] feature/data/984559.hsl
6 Yeast cell cycle [28] 698 72 Sample input files

in Expander [29]

Figure 5. Result of DGC on the reduced form of Dataset 1 using our dissimilarity measure.

The clustering result of FINN using DBK is reported
in Section 4.

4. Performance Evaluation

The methods were implemented in Java in Windows en-
vironment and to evaluate the methods the six real-life
datasets were used as given in Table 1. All the datasets
are normalized to have mean 0 and standard deviation 1.

4.1 Results: DGC

We exhaustively tested DGC on the above datasets with
σ=2. The value of σ was taken to be 2 as we went for
an exhaustive search for the different patterns. We have
used our dissimilarity measure [2] for D and the value of
θ=2. We compared our algorithm with k-means, hier-
archical clustering (UPGMA), CLICK, SOM, DCCA and
GA. The k-means and UPGMA algorithms were evaluated
using the built-in MATLAB implementation. CLICK and
SOM algorithms were executed using the implementation
provided by the Expander tool [29]. CLICK was run with
the default parameter provided by Expander. Expander

was also used for finding the homogeneity of the k-means
clustering. For k-means, k varied from 2 to 30 by incre-
ments of two. The results obtained by our method over
a reduced form of Dataset 1 are shown in Fig. 5. The
dataset was reduced by filtering out the low variance and
low entropy genes from the data. We note here that the
clusters obtained by our algorithm are detected automat-
ically and unlike k-means no input parameter for number
of clusters is needed. We have tested k-means with k=16,
20, 30, 40, 48. As our method gave a total of 47 clusters
(when Euclidean distance was used) and 44 clusters (when
DBK was used) for the reduced form of Dataset 1, we also
tested k-means algorithm for k=44 and 47, respectively.
Similarly, UPGMA algorithm was tested for cutoff=43,
44, 47 and also for various other values. Some of the clus-
ters obtained by our method over full Dataset 1 are shown
in Fig. 6. A total of 118 clusters were generated from the
full Dataset 1. In Fig. 7 the clusters generated by k-means
on the reduced form of Dataset 1 is given. In Figs. 8
and 9, clusters generated from the reduced form and full
form of Dataset 1 using UPGMA at cutoff=46 and 176
are shown, respectively. In Fig. 10, some of the clusters
generated from the full Dataset 2 using our method are

61

Figure 6. Result of DGC on the full Dataset 1 using our dissimilarity measure.

Figure 7. Result of k-means on the reduced form Dataset 1 at cutoff=46.

Figure 8. Result of UPGMA on the reduced form Dataset 1 at cutoff=46.

shown and in Fig. 11 the clusters identified for Dataset
5 using DBK is depicted. Finally, to validate the clus-
ter results, cluster validity measures like z -score, homo-
geneity and silhouette index were used and the results
were compared with the different clustering algorithms
(Tables 4–7).

4.2 Results: FINN

We exhaustively tested FINN on all the datasets. Using
FINN, eight clusters were obtained from the Dataset 3.
When the method was executed on Dataset 1, the clus-
ters obtained agreed well with the functional classification

62

Figure 9. Result of UPGMA on the full Dataset 1 at cutoff=176.

Figure 10. Some clusters generated using DGC on
Dataset 2. A total of 17 clusters were detected. Figure 11. The clusters obtained by DGC on Dataset 5.

63

Figure 12. The core genes of Cluster 1.

Figure 13. Final Cluster 1 based on the core genes of
Fig. 12.

of [24]. Because of space constraint, only one cluster from
each of the datasets 2 and 3 are presented here. Of the
different clusters obtained from Dataset 2, one is shown in
this paper. The cluster along with its core genes is shown
in Figs. 12 and 13. One of the clusters obtained from the
Dataset 3 is shown in Fig. 14 and its respective core genes
is shown in Fig. 15. From the results of FINN, it can be
concluded that the core genes give the overall trend of the
cluster. Therefore, this approach can also be used to detect
the embedded clusters in the dataset. From our exhaustive
experiments on FINN, it is seen that by varying the value
of β, the quality of the clusters can be increased further.
The support count in the frequent itemset generation has
a pivotal role in the detection of the core genes. With
the increase in the support count, a more compact set of
core genes can be obtained. Moreover, for higher values of
support count, frequent itemset generation also becomes

Figure 14. The final Cluster 1 obtained from the core
genes.

Figure 15. The core genes at s=40%.

faster. Taking these factors into count, more compact
clusters may be obtained.

4.3 Cluster Quality

In this section, the performance of DGC is demonstrated
on the six publicly available benchmark microarray data
sets. Comparative studies of several widely used microar-
ray clustering algorithms are reported. To judge the per-
formance of DGC, silhouette index [30], average homogene-
ity score [14] and z-score [31] were used. Tables 2 and 3
show the homogeneity and silhouette values for the differ-
ent cluster algorithms on the real-life datasets mentioned
before.

To validate our clustering result, we used z-score [31]
as the measure of agreement. Higher value of z indicates
that genes would be better clustered by function, indicating

64

Table 2
Homogeneity Values for DGC and Its Counterparts

Datasets Method Applied No. of Clusters Threshold Value Homogeneity

Dataset 2 k-means 4 NA 0.553

k-means 5 NA 0.591

k-means 6 NA 0.601

k-means 16 NA 0.771

k-means 29 NA 0.787

k-means 30 NA 0.8

SOM 4 2× 2 grid 0.624

SOM 9 3× 3 grid 0.723

SOM 25 7× 7 grid 0.792

SOM 41 8× 8 grid 0.840

SOM 33 10× 10 grid 0.823

CLICK 3 Default value 0.549

DGC 17 2 0.877

Dataset 4 k-means 4 NA 0.603

k-means 5 NA 0.635

SOM 4 2× 2 grid 0.555

CLICK 4 Default value 0.754

DGC 4 4 0.741

Dataset 5 k-means 6 NA 0.475

k-means 10 NA 0.531

k-means 25 NA 0.604

SOM 16 4× 4 grid 0.571

SOM 32 10× 10 grid 0.616

CLICK 5 Default value 0.483

DGC 14 1.3 0.969

DGC 17 1.5 0.959

DGC 25 2 0.923

Dataset 5 k-means 5 NA 0.452

k-means 11 NA 0.528

k-means 30 NA 0.602

SOM 16 4× 4 grid 0.571

SOM 26 6× 6 grid 0.612

SOM 28 7× 7 grid 0.599

CLICK 5 Default value 0.483

DGC 11 6 0.833

a more biologically relevant clustering result. The result
of applying the z -score on the reduced form of Dataset 1
is shown in Table 4. Table 4 clearly shows that our
method outperforms k-means, DCCA and SOM w.r.t. the
cluster quality. Table 5 shows the z-score values when the
proposed method is executed at different values of θ. It
can be seen that the cluster result gives better clustering
at θ=2 for the full Dataset 1. The z-score values obtained
from clustering the full Dataset 1 is given in Table 6. As
can be seen in the table, our method performs better than
K-means and hierarchical clustering. We note here that

unlike k-means our method does not require the number
of clusters as an input parameter. It detects the clusters
present in the dataset automatically and gives the rest
as noise. Also, UPGMA requires the parameter cutoff as
input to the algorithm.

The z-score value of DGC compared with DCCA is
given in Table 7. It can be observed that unlike the other
datasets, DCCA performs better for Dataset 2. However,
for most of the datasets DGC performs better than its
counterparts other than Dataset 4 where CLICK performs
better in terms of average homogeneity.

65

Table 3
Silhouette Index for DGC and Its Counterparts

Datasets Method Applied No. of Clusters Silhouette Index

Dataset 2 MOGA-SVM (RBF) 5 0.4426

MOGA (without SVM) 5 0.4392

FCM 6 0.3872

Average linkage 4 0.4388

SOM 6 0.3682

DGC at θ=2 17 0.7307

Dataset 3 MOGA-SVM (RBF) 6 0.45127

MOGA (without SVM) 6 0.4872

FCM 5 0.4050

Average linkage 6 0.4122

SOM 5 0.4430

DGC at θ=4 8 0.489

Dataset 4 MOGA-SVM (RBF) 4 0.4312

MOGA (without SVM) 4 0.4011

FCM 4 0.3642

Average linkage 5 0.3151

SOM 5 0.2133

DGC at θ=0.3 5 0

DGC at θ=0.4 10 0.8

Dataset 5 MOGA-SVM (RBF) 6 0.4154

MOGA (without SVM) 6 0.3947

FCM 8 0.2995

Average linkage 4 0.3562

SOM 6 0.3235

k-means 6 0.509

DGC at θ=2 26 0.4077

DGC at θ=1.5 16 0.688

DGC at θ=1.3 14 0.738

Table 4
z-Scores for DGC and Its Counterparts for

the Reduced Form of Dataset 1

Method Applied No. of Clusters z-score

k-means 19 10.6

DCCA 2 −0.995

SOM 35 4.46

DGC at θ=0.7 7 12.6

5. Conclusion

This paper presents two methods for clustering gene
expression data, DGC and FINN. The clusters obtained
by DGC have been validated using several cluster validity
measures over six microarray data sets. The regulation-
based cluster expansion also overcomes the problem of
maintaining the pattern information usually linked with
the different clustering approaches due to traditional simi-
larity measures. In FINN, the frequent itemset generation
step gives the innermost or the fine clusters from the gene

66

Table 5
z-Scores for DGC at Different Values

of θ for the Full Dataset

DGC at No. of Clusters z-Score

θ=0.7 176 8

θ=1 128 9.6

θ=1.5 120 10.6

θ=2 118 13.2

θ=2.7 120 12.9

θ=3.2 119 11.3

θ=3.7 119 12.5

θ=4.7 119 10.5

Table 6
z-Scores for DGC and Its Counterparts

for the Full Dataset 1

Method Applied No. of z-Score Total no.

Clusters of Genes

UPGMA 176 9.7 6,089

k-means 176 NA 6,089

DGC at θ=0.7 176 9.12 6,089

DGC at θ=1 128 7.02 6,089

DGC at θ=1.5 120 11.2 6,089

DGC at θ=2 118 12 6,089

DGC at θ=2.7 120 11.2 6,089

Table 7
z-Scores for DGC and Its Counterparts of

Dataset 2

Method Applied No. of Clusters z-Score

DCCA 12 7.19

DGC 17 5.69

expression data and the shared neighbour clustering ap-
proach gives the final clusters in the dataset. Compared
with other clustering approaches, our method was found
better capable of identifying finer clusters of the dataset
and may also be used to detect embedded clusters.

References

[1] D. Stekel, Microarray bioinformatics (Cambridge, UK:
Cambridge University Press, 2005).

[2] R. Das, D.K. Bhattacharyya, & J.K. Kalita, A new approach
for clustering gene expression time series data, International
Journal of Bioinformatics Research and Applications, 5 (3),
2009, 310–328.

[3] J.B. McQueen, Some methods for classification and analysis
of multivariate observations, Proceedings of the Fifth Berkeley

Symposium Mathematics Statistics and Probability, 1, 1967,
281–297.

[4] J.C. Bezdek, Pattern recognition with fuzzy objective function
algorithms (New York: Plenum Press, 1981).

[5] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan,
E. Dmitrovsky, E.S. Lander, & T.R. Golub, Interpreting
patterns of gene expression with self-organizing maps: Methods
and application to hematopoietic differentiation, Proceedings
of National Academy of Sciences, 96 (6), 1999, 2907–2912.

[6] M. Eisen, P. Spellman, P. Brown, & D. Botstein, Cluster analy-
sis and display of genome-wide expression patterns, Proceedings
of National Academy of Sciences, 95, 1998, 14863–14868.

[7] J. Dopazo & J.M. Carazo, Phylogenetic reconstruction using
an unsupervised neural network that adopts the topology of
a phylogenetic tree, Journal Molecular of Evolution, 44, 1997,
226–233.

[8] A. Bhattacharya & R. De, Divisive correlation clustering
algorithm (DCCA) for grouping of genes: Detecting varying
patterns in expression profiles. Bioinformatics, 24 (11), 2008,
1359–1366.

[9] G. Shu, B. Zeng, Y.P. Chen, & O.H. Smith, Performance
assessment of kernel density clustering for gene expression
profile data, Comparative and Functional Genomics, 4, 2003,
287–299.

[10] D. Jiang, J. Pei, &A. Zhang, DHC: A density-based hierarchical
clustering method for time series gene expression data, Proc.
of BIBE2003: 3rd IEEE International Symposium on Bioin-
formatics and Bioengineering, Bethesda, Maryland, 2003, 393.

[11] R.A. Jarvis & E.A. Patrick, Clustering using a similarity
measure based on shared nearest neighbors, IEEE Transactions
on Computers, 11, 1973, 1025–1034.

[12] J. Herrero, A. Valencia, & J. Dopazo, A hierarchical unsuper-
vised growing neural network for clustering gene expression
patterns, Bioinformatics, 17, 2001, 126–136.

[13] A. Ben-Dor, R. Shamir, & Z. Yakhini, Clustering gene ex-
pression patterns. Journal of Computational Biology, 6 (3–4),
1999, 281–297.

[14] R. Sharan & R. Shamir, Click: A clustering algorithm with
applications to gene expression analysis, Proc. of 8th Interna-
tional Conference on Intelligent Systems for Molecular Biology,
AAAI Press, Menlo Park, California, 2000.

[15] A. Bellaachia, D. Portnoy, Y. Chen, & A.G. Elkahloun, E-cast:
A data mining algorithm for gene expression data, Proc. of
the BIOKDD02: Workshop on Data Mining in Bioinformatics
(with SIGKDD02 Conference), Edmonton, Alberta, 2002, 49.

[16] L.J. Heyer, S. Kruglyak, & S. Yooseph, Exploring expression
data: Identification and analysis of co-expressed genes,Genome
Research, 9 (11), 1999, 1106–1115.

[17] U.Maulik & S. Bandyopadhyay, Fuzzy partitioning using a real-
coded variable-length genetic algorithm for pixel classification,
IEEE Transactions on Geoscience and Remote Sensing, 41 (5),
2003, 1075–1081.

[18] S. Bandyopadhyay, U. Maulik, & A. Mukhopadhyay, Multi-
objective genetic clustering for pixel classification in remote
sensing imagery, IEEE transactions on Geoscience and Remote
Sensing, 45 (5), 2007, 1506–1511.

[19] S. Bandyopadhyay, A. Mukhopadhyay, & U. Maulik, An
improved algorithm for clustering gene expression data, Bioin-
formatics, 23 (21), 2007, 2859–2865.

[20] U. Maulik, A. Mukhopadhyay, & S. Bandyopadhyay, Com-
bining pareto-optimal clusters using supervised learning for
identifying co-expressed genes, BMC Bioinformatics, 10 (27),
2009.

[21] A. Ben-Dor, B. Chor, R. Karp, & Z. Yakhini, Discovering
local structure in gene expression data: The order-preserving
submatrix problem, Proc. of the 6th Annual International
Conf. on Computational Biology, ACM Press, New york, USA,
2002, 49–57.

[22] M. Ester, H.P. Kriegel, J. Sander, & X. Xu, A density-based
algorithm for discovering clusters in large spatial databases
with noise, Proc. of International Conference on Knowledge
Discovery in Databases and Data Mining (KDD-96), Portland,
Oregon, 1996, 226–231.

[23] J.L. DeRisi, V.R. Iyer, & P.O. Brown, Exploring the metabolic
and genetic control of gene expression on a genomic scale,
Science, 278, 1997, 680–686.

67

[24] R.J. Cho, M. Campbell, E. Winzeler, L. Steinmetz, A. Conway,
L. Wodicka, T.G. Wolfsberg, A.E. Gabrielian, D. Landsman,
D.J. Lockhart, & R.W. Davis, A genome-wide transcriptional
analysis of the mitotic cell cycle, Molecular Cell, 2 (1), 1998,
65–73.

[25] X. Wen, S. Fuhrman, G.S. Michaels, D.B. Carr, S. Smith, J.L.
Barker, & R. Somogyi, Large-scale temporal gene expression
mapping of central nervous system development, Proceedings
of National Academy of Science, 95 (1), 1998, 334–339.

[26] P. Reymonda, H. Webera, M. Damonda, & E.E. Farmera,
Differential gene expression in response tomechanical wounding
and insect feeding in arabidopsis, Plant Cell, 12, 2000, 707–720.

[27] V.R. Iyer, M.B. Eisen, D.T. Ross, G. Schuler, T. Moore,
J. Lee, J.M. Trent, L.M. Staudt, J.J. Hudson, M.S. Boguski,
D. Lashkari, D. Shalon, D. Botstein, & P.O. Brown, The tran-
scriptional program in the response of the human fibroblasts
to serum, Science, 283, 1999, 83–87.

[28] P.T. Spellman, M.Q. Sherlock, G. Zhang, V.R. Iyer, K. Anders,
M.B. Eisen, P.O. Brown, D. Botstein, & B. Futcher, Com-
prehensive identification of cell cycle-regulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization,
Molecular Biology of the Cell, 9 (12), 1998, 3273-3297.

[29] R. Sharan, A. Maron-Katz, & R. Shamir, Click and expander:
A system for clustering and visualizing gene expression data,
Bioinformatics, 19 (14), 2003, 1787–1799.

[30] P. Rousseeuw, Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis, Journal of Computational
Applied and Mathematics, 20, 1987, 153–165.

[31] F. Gibbons & F. Roth, Judging the quality of gene expression
based clustering methods using gene annotation, Genome
Research, 12, 2002, 1574–1581.

Biographies

R. Das is an assistant professor
in the Department of Computer
Science and Engineering, Tezpur
University, Tezpur, India. She
is currently pursuing her Ph.D.
in Computer Science in the De-
partment of Computer Science
and Engineering, Tezpur Uni-
versity. Her research interests
include clustering and bioinfor-
matics. She has published several
papers in international journals

and referred conference proceedings.

D.K. Bhattacharyya is a profes-
sor in the Department of Com-
puter Science and Engineering,
Tezpur University, Tezpur, India.
He received his Ph.D. fromTezpur
University in the year 1999. His
research interests include data
mining, network security and
content-based image retrieval. He
has published more than 100 pa-
pers in international journals and
referred conference proceedings

and has edited two books.

J. K. Kalita is a professor of
Computer Science at the Uni-
versity of Colorado at Colorado
Springs. He received his Ph.D.
from the University of Pennsyl-
vania. His research interests are
in natural language processing,
machine learning, artificial intelli-
gence and bioinformatics. He has
published more than 70 papers
in international journals and re-
ferred conference proceedings and

has written a book.

68

