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COMPARISON OF CHEMICAL DESCRIPTORS

FOR PROTEIN–CHEMICAL

INTERACTION PREDICTION
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Abstract

Predicting protein–chemical interaction has been an important and

challenging task in the bioinformatics community, and there are

many related applications in biomedical research, including QSAR

modelling and novel lead discovery. A fundamental hypothesis for

predicting protein–chemical interaction is that chemical compounds

sharing chemical similarity should also share protein target profiles,

and the critical question is hence how to measure the distance

(or similarity) between two chemicals. An increasing number

of chemical descriptors have been invented in the past decades.

As chemical descriptors play a critical role in predicting protein–

chemical interaction, it is of great importance to compare chemical

descriptors and evaluate their performance in such predictions. In

this paper, we reported our case study on comparing the performance

of DRAGON descriptors, the frequent subgraph-based descriptors

(FFSM), and the signature molecular descriptor on predicting

protein–chemical interaction using support vector machines over a

large number of data sets. Our experiments demonstrated that

FFSM and signature descriptors outperformed most DRAGON

descriptor classes, and wisely selecting chemical descriptors will be

beneficial for predicting protein–chemical interaction.
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1. Introduction

One of the critical steps in drug discovery is the identifica-
tion of chemical compounds with desired and reproducible
binding activity against a specific biomolecular target [1].
This has become a significant challenge in the early stage of
drug discovery, since any new drug must not only produce
the desired medical response to the disease, but should
also minimize any side effects [2]. Understanding and pre-
dicting the interactions between target proteins and small
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molecules is hence of great importance in pharmaceutical
industry. Our knowledge about the interactions between
chemical space and biological space, however, is very lim-
ited. For instance, millions of chemicals have been de-
posited into the NCBI PubChem Databases, but only a
very small fraction (less than 2%) have their target protein
information linked [3]. In addition, experimental determi-
nation of potential protein–chemical interactions remains
time-consuming and expensive. Therefore, new in silico
methods capable of predicting potential protein–chemical
interactions efficiently are needed.

There have been many methods that represented each
chemical by a set of descriptors based on frequency, molec-
ular properties, topological and geometric substructures [2,
4, 5], e.g., DRAGON descriptors [6], Daylight fingerprints
[7], extended connectivity fingerprints (ECFP) [8], Maccs
keys [7], cyclic patterns and trees [5], signature molecular
descriptors [9] and frequent subgraph-based descrip- tors
[10, 11]. All these methods have been well developed and
have demonstrated their effectiveness and success in many
experiments and applications. In addition, they can also be
used to rapidly predict the physical, chemical, and biolog-
ical properties of small molecules to screen large database
and identify suitable drug candidates [12–14].

In general each such method consists of three compo-
nents: (i) descriptor extraction and selection, (ii) predic-
tive model selection, and (iii) model assessment. First,
descriptor extraction methods are used to compute various
descriptors for each chemical and convert the chemical to
a vector, in which each component is a molecular descrip-
tor, e.g., molecular weight, number of hydrogen bonds,
and so on. Moreover, with a descriptor vector and the
corresponding class label as a datum point, a set of such
points is then divided into three disjoint sets: training,
validation, and testing set. Model selection is needed to
choose a model of optimal performance, which in practice
means selecting best learning parameters from a small set
of choices based on training and validation sets. Finally,
we applied model assessment techniques to estimate the
prediction error (generalization error) of the selected model
on the unused testing set.

In the framework of binary classification described
above, classifiers played an important role by taking de-
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scriptor vectors and class labels as input and generate
prediction models as output. There are many widely used
classifiers, e.g. support vector machines (SVM), K-nearest
neighbors (KNN), neural network and random forest. As
SVM is one of the most widely used kernel-based classi-
fiers in binary classification and regression, we are mainly
focusing on protein–chemical interaction prediction using
the SVM classifier.

The challenging task then comes to selecting accurate
descriptor extraction methods to compute a set of descrip-
tors for each chemical. As different descriptors perform
variously, they can significantly affect the resulting predic-
tion accuracy. This is the first motivation for us to do a
case study of the performance comparison of different de-
scriptor classes. Our eventual goal is to discover some best
performing descriptor sets for predicting protein–chemical
interaction based on SVM classification. In this work,
we carried out detailed performance comparisons among
the 20 classes of DRAGON descriptors [6], the frequent
subgraph-based descriptors [10], and the signature molec-
ular descriptors [9] on 14 high-quality chemical data sets.
Our results provide important insights on how to select
chemical descriptors to achieve optimal prediction perfor-
mance.

The rest of the paper is organized as follows: in Sec-
tion 2, we present an overview of related work on currently
used descriptor extraction methods. Section 3 provides
background information about DRAGON descriptors, sig-
nature descriptors, graph representation of chemical chem-
icals, frequent subgraph-based descriptors, and SVM clas-
sification. Section 4 describes the data sets and experi-
mental designs in detail. In Section 5, we present our ex-
perimental results and give discussions of the performance
of various descriptor sets. Finally, we conclude this work
with a summary and future plan in Section 6.

2. Related Work

There are two basic hypotheses for protein–chemical inter-
action prediction: (1) chemicals sharing chemical similar-
ity should also share target proteins; (2) targets sharing
similar ligands should share similar biological patterns, or
binding sites. The classical paradigm here is as follows: if
two chemicals (are considered very similar to each other
in some way and we know one of them interacts with a
protein, we would expect that it is very likely for the other
to interacting with the same target (chemical) too. How-
ever, if few or no ligands are known for a target, e.g., or-
phan G-protein coupled receptors [15], information has to
be learned from other related targets with known ligands.
In this paradigm, classifiers learn from both proteins and
chemicals simultaneously to predict if a pair of protein and
chemical is interacting or not. On the other hand, when
sufficient ligands of a given target protein are available, it
is even more accurate to use only ligand information to
make a prediction. In our study, for instance, signature de-
scriptors could give prediction accuracy of up to 90%, but
the accuracy decreased to less than 80% when it combined
with some protein sequence descriptors [16]. Such strate-
gies are very useful in finding diverse novel lead chemicals

in drug discovery and development.
In this paper, we limited our scope on a comprehen-

sive comparison of a few classes of widely used chemical
descriptors, and expected to provide insights on their pre-
diction performance. The key question of predicting if a
chemical interacts with a given protein is how to measure
the distance (or similarity) between two chemicals. As the
quality of chemical descriptors that convert each chem-
ical into vectors of numbers play a critical role in such
predictions, it is of great importance to investigate which
chemical descriptors perform better than the others.

There have been many previous studies on comparing
the prediction performance of chemical descriptors. Hert
et al. [17] compared a range of different 2D fingerprints
for similarity-based virtual screening, and found that these
fingerprints were notably more effective than fingerprints
based on a fragment dictionary. They concluded that the
combination of these fingerprints with data fusion based
on similarity scores provides an effective virtual screening
tool in lead discovery. Gedeck et al. [18] analyzed how
the quality of QSAR predictions depended on the data
sets and descriptor types, and they revealed that none of
the descriptors was best for all data sets. Although 2D
fragment based descriptors usually performed better than
simpler descriptors based on augmented atom types, it was
necessary to test them in each individual case.

In addition, Karypis et al. [2] introduced some new
descriptor sets such as graph fragment based descriptors
(GF), and conducted a comprehensive comparison of the
performance of the newly developed descriptors with day-
light fingerprints [7], extended connectivity fingerprints
(ECFP) [8], Maccs keys [7], cyclic patterns and trees [5] in
the context of SVM-based chemical compound classifica-
tion and ranked retrieval. The goal of his work was to an-
alyze what properties of descriptor spaces were important
in providing effective representation for molecular graphs,
and their experiments demonstrated that descriptor class
ECFP and GF consistently and statistically outperformed
previously developed all other descriptor sets.

However, some other widely used chemical descriptors
were not covered in these previously studies. For instance,
DRAGON [6] provided a collection of 20 widely used classes
of chemical descriptors. Huan et al. [10] developed a fast
frequent subgraph mining (FFSM) algorithm to generate
frequent subgraph-based descriptors for chemicals. Faulon
et al. [9] developed an algorithm of signature molecular de-
scriptors for both protein sequences and chemicals. In this
paper, we conducted a case study of the performance com-
parison between these 22 classes of descriptors based on
SVM classification, and provided insights on selecting op-
timal chemical descriptors for predicting protein–chemical
interaction.

3. Background

3.1 DRAGON Descriptors

DRAGON is a commercial software package developed by
Milano Chemometrics and QSAR Research Group [6] for
calculating molecular descriptors that can be used to eval-
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uate molecular structure–activity or property relationships
(QSAR/P), as well as for high-throughput virtual screen-
ing of chemical databases. Users need molecular structure
files (SDF, SMILE, etc.) as input, and are given formatted
output files. Although DRAGON can work on 2D struc-
tures, only much less descriptors can be calculated in this
case. To make full use of DRAGON software, 3D optimized
structures with all hydrogen atoms should be used.

DRAGON 5.4, which we used in this work, computes
1664 molecular descriptors that are divided into 20 de-
scriptor sets (or logical blocks): constitutional descrip-
tors (DR01), topological descriptors (DR02), walk and
path counts (DR03), connectivity indices (DR04), infor-
mation indices (DR05), 2D autocorrelations (DR06), edge
adjacency indices (DR07), Burden eigenvalues (DR08),
topological charge indices (DR09), eigenvalue-based in-
dices (DR10), Randic molecular profiles (DR11), geomet-
rical descriptors (DR12), RDF descriptors (DR13), 3D-
MoRSE descriptors (DR14), WHIM descriptors (DR15),
GETAWAY descriptors (DR16), functional group counts
(DR17), atom-centered fragments (DR18), charge descrip-
tors (DR19), and molecular properties (DR20). For
more detailed introduction to DRAGON software and
descriptors, refer to the help manual at its homepage
(http://www.talete.mi.it/index.htm).

For instance, in a molecule with known molecular com-
position and atom connectivities, functional group counts
(DR17) are simply defined as the number of specific func-
tional groups, and atom-centered fragments (DR18) are de-
fined as the number of specific atom types. For each atom-
centered fragment, its frequency occurring in the chemical
structure is counted, and so far 120 atom-centered frag-
ments defined by Ghose and Crippen [19] are included. Fi-
nally, molecular properties (DR20) include a set of hetero-
geneous molecular descriptors describing physico-chemical
and biological properties as well as some molecular char-
acteristics, such as hydrophilic factor, octane–water par-
tition coefficient, molar refractivity, etc. As the charge
descriptors (DR19) are not available to many chemicals
in our data sets, they will be skipped in our study and
a combination of all other 19 descriptor sets (denoted as
“DRAL”) will be used instead.

3.2 Signature Molecular Descriptors

Faulon et al. [9] developed an algorithm of signature molec-
ular descriptors by enumerating all molecular signatures
with a given height from chemical structures. Specifically,
the signature of a molecule is a vector whose components
are counts of the number of occurrences of a particular
atomic signature in the molecule. An atomic signature
is a canonical representation of the subgraph surround-
ing a particular atom. This subgraph includes all atoms
and bonds up to a predefined distance, called signature
height, from a given atom. The optimal signature height
for chemical is usually in range of 1–5.

To generate the signature lists of a chemical, a signa-
ture translation program named “translator” was down-
loaded from the homepage of Faulon et al. [9]. Given a
chemical structure with a predefined signature height, a

list of available signatures and their occurring frequencies
can be generated very efficiently. The running time for
generating the signatures of most chemical structures is
only up to a minute. Given a data set with m chemicals, a
list of available signatures for each chemical are generated,
and then all distinct signatures present in all chemicals
(the union of all signature lists, e.g., totally n signatures)
can be obtained. Finally, each chemical will be associated
with an n-dimensional vector, in which each component is
the number of occurrence of each signature in the chemical.

3.3 Graph Representation of Chemical Structures

Chemical compounds have well-defined geometric struc-
tures that can be easily converted into a connected, la-
belled and undirected graph representation. Each chem-
ical has a number of atoms represented as vertices and a
number of bonds between atoms represented as edges in
the molecular graph. Usually vertices are labelled with the
atom element type(atomic symbol or number, e.g., carbon
atoms are labelled with C or 6), and edges are labelled with
the bond type (bond order or separate integers, use 1, 2,
3, 4 for single, double, triple, and aromatic bonds, respec-
tively). Edges in a graph are undirected because chemical
bonds have no associated directionality. Figure 1 shows
an example of a chemical structure and the corresponding
graph representation.

Figure 1. A chemical structure and the corresponding
graph representation.

3.4 Frequent Subgraph-Based Descriptors

Frequent subgraph mining is widely studied since frequent
subgraphs are believed to be related to some structural
or functional motifs in chemical and biological structures.
Huan et al. [10] developed a depth-first search algorithm
for fast frequent subgraph mining (FFSM), which identi-
fied all connected subgraphs that occurs more frequently
than a predefined frequency threshold σ called support
threshold in a graph database. Each chemical compound
is represented by a binary vector with length equal to the
number of all mined subgraphs, and then each subgraph
is mapped into a specific vector index. If a chemical com-
pound contains a subgraph then the corresponding bit is
set to one, otherwise it is set to zero. [10, 20]

By mining all frequent subgraphs from a chemical
database, FFSM creates an n-dimensional descriptor
vector for each chemical, and hence provides frequent
subgraph-based descriptors. A potential disadvantage of
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this method is that it is unclear how to select a suitable
value of the support σ for a given problem. A very high
value will fail to discover important sub-structures whereas
a very low value will result in combinatorial explosion of
frequent subgraphs. In Fig. 2, a graph database with
3 graphs is in the top row, and the returned frequent
subgraphs are listed in the bottom row with support= 2/3.

Figure 2. A graph database with 3 graphs in upper row,
and frequent subgraphs returned by FFSM algorithm with
support= 2/3 in lower row.

3.5 Support Vector Machines

As a supervised learning method widely used for classifica-
tion and regression, support vector machines (SVM) [21]
view input data as two sets of vectors in an n-dimensional
space, each with different class labels. SVM constructs
a separating hyperplane in that space by maximizing the
margin between the two data sets. To calculate the margin,
two additional parallel hyperplanes are constructed, one
on each side of the separating hyperplane, and are “pushed
up” against the two sets of data points respectively during
the optimization process. Intuitively, a good separation is
achieved by the two parallel hyperplanes with the largest
distance to each other.

We downloaded the state-of-the-art implementation
named LIBSVM [22] of the SVM classifier. Signature,
DRAGON, and FFSM descriptors take chemical com-
pounds in SDF format as input, convert them into n-
dimensional descriptor vectors. Then LIBSVM treats each

Table 1
Characteristics of the 14 data sets

Data sets FFX ACE COX2 DHFR THR AR ChC

Number of Actives 279 65 219 203 68 60 69

Number of Inactives 156 49 103 194 20 60 69

Avg. Number of Atoms 59.8 42.4 41.9 40.6 68.1 38.3 41.7

Data Sets DDP4 FVII FXa FAAH HCV HIVP HIVB

Number of Actives 82 53 144 41 79 140 136

Number of Inactives 85 53 144 41 79 140 138

Avg. Number of Atoms 43.8 57.2 60.0 46.7 99.6 86.6 83.8

n-dimensional vector as a point in n-dimensional space,
and build a decision boundary between actives and inactive
samples in that space.

4. Experimental Study

4.1 Data Sets

We selected 14 protein–chemical binding data sets from
different sources, and the characteristics of these data
sets are listed in Table 1. The first data set consists
of 279 Factor Xa inhibitors and 156 inactives [23]. The
next four data sets includes a number of inhibitors and
approximately equal number of inactives to each of four
target proteins: (1) ACE; (2) COX2; (3) DHFR; and (4)
THR [24]. Chemicals with IC50 < 10 nM (pIC50 > 8) are
defined as actives and >1μM (or pIC50 < 6) as inactives.

The other nine data sets were extracted manually from
the BindingDB database [25, 26]. This database contained
more than 450 target proteins and their binding chemicals.
Two types of binding activity parameters Ki and IC50

were provided, and both of them measured the inhibition
power of a chemical compound to a specific target protein
[27, 28]. We manually selected nine target proteins and
enough binding chemicals with known Ki values for each:
(1) Androgen Receptor (AR); (2) Collagenase (ChC); (3)
DPP-IV; (4) Factor VIIa (FVII); (5) Factor Xa (FXa); (6)
Fatty Acid Amide Hydrolase (FAAH); (7) HCV NS3-NS4A
Serine Protease (HCV); (8) HIV-1 Protease (HIVP); and
(9) HIV-1 Protease B Subtype (HIVB). As the BindingDB
database provided only real-valued binding activity param-
eters, we need to find a way to define class labels for each
chemical. We used a strategy presented in Smalter et al.
[20], in which all Ki value are first sorted in non-descending
order, and then the top 37.5% data are defined as actives
and the bottom 37.5% are as inactives, hence the middle
25% are thrown out to impose some separation between
the two classes.

4.2 Experimental Methods

The first experiment was to use all 1,664 descriptors from
DRAGON 5.4 (some descriptors may not be available to all
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Figure 3. Prediction accuracy of signature descriptors over signature heights.

chemicals in a data set) a single descriptor class, and the
prediction accuracy was denoted in 2 as “DRAL”. Then
each class of DRAGON descriptors was used individually
and the results were listed as DR01, DR02, . . . , DR18,
and DR20. We omitted DR19 since this descriptor class
was not available to many chemicals in the data sets.
Second, the signature molecular descriptors were used to
extract descriptors from the chemicals. As signature height
can significantly influent the prediction accuracy, we first
optimized the signature height from 1 to 5, and the results
were shown in Fig. 3. Finally, we used FFSM descriptors
to mine frequent subgraphs from each of the 14 data sets
and the results were listed in Table 2 and denoted as
“FFSM”. In this paper, the support σ was set at 30% for
all experiments.

A server with 96 Intel Celeron 1.6Ghz processors and
30 GB memory was used for FFSM descriptors, and most
calculations can be finished within a few minutes. All
calculations for DRAGON and signature descriptors were
performed on a notebook computer with a 1.6GHz In-
tel CoreDuo processor and 2GB memory within tens of
minutes per data set.

4.3 Model Selection and Assessment

To select a model with the best balance of inductive bias
and optimal complexity, we first randomly selected 30%
of each data set as testing set, and the rest 70% data
will be used as training and validation sets. We then
used LIBSVM and RBF kernels to train our classification
model with training sets and validated it with validation
sets. A computational grid of parameters were searched
to identify the best parameter set using a standard 10-fold
cross-validation process.

Our experiments showed that the classification model
was not very sensitive to a small change of C and γ,
therefore this optimal parameter set was applied to all data
sets for simplicity. The reason might be that our data sets
are all balanced. For all experiments, the optimal model
was obtained when C=1.0 (train error/margin tradeoff)
and γ=0.5 (inverse kernel width).

After finding the optimal model, we then evalu-
ated our model on the testing set that was never used
in training. Prediction accuracy was defined here as
(TP+TN)/(TP+TN+FP+FN) (TP: true positive, TN:
true negative, FP: false positive, FN: false negative).
To obtain stable results, we permutated each data set
randomly and selected the testing set, and then repeated
the same experiments for 10, 20, 30 times. Our results
revealed that the number of repeating times did not affect
the results significantly. The final accuracy and standard
deviations were computed by averaging over 20 repeated
experiments.

5. Results and Discussions

We conducted experiments for signature molecular descrip-
tors in the signature height range 1–5 and the results are
shown in Fig. 3. It was obviously that when the prediction
accuracy converges when the height is in 3–5, therefore we
selected signature height= 3 for all following experiments
(denoted as “Sign3”).

In Table 2, we presented classification results for the
22 descriptor sets, and also plotted the prediction accuracy
versus the 14 data sets for each specific descriptor class
(figure not shown). As a first impression, the performance
of each individual descriptor class differed significantly,
and some descriptor sets consistently outperformed other
descriptor sets over almost all the data sets. In Fig. 4,
we plotted some best performing descriptor sets for fur-
ther comparisons. In all figures, each curve represented
the performance of a specific descriptor class, and was dis-
criminated from each other with different colours and line
styles.

A clear trend in Fig. 4 was that the prediction
accuracy of most descriptor sets was better on data sets
that were careful curated (set 1–5) than on the rest (set
6–14). One of the possible reasons was that our labelling
strategy can conveniently produce binary data sets with
equal proportion of positive/negative classes, but may not
accurately reflect true biological activities of chemicals.

Combining Table 2 and Fig. 4, we found that FFSM de-
scriptors and signature descriptors (height= 3) performed

17



Table 2
Prediction Accuracy on Testing Set with the Optimal Model for all 14 Data Sets. Star(*) Denotes the Descriptor Class that

Yields the Best Accuracy for a Given Data Set

Descriptors FFX ACE COX2 DHFR THR AR ChC

FFSM 0.893 0.712 0.701 0.800 0.808 0.764 0.970

Sign3 0.963∗ 0.753 0.688 0.820 0.772 0.853∗ 0.999∗

DRAL 0.645 0.583 0.680 0.483 0.773 0.450 0.426

DR01 0.705 0.604 0.664 0.708 0.748 0.632 0.605

DR02 0.645 0.584 0.680 0.484 0.773 0.682 0.428

DR03 0.702 0.607 0.672 0.542 0.726 0.750 0.627

DR04 0.753 0.616 0.655 0.695 0.726 0.710 0.537

DR05 0.660 0.584 0.671 0.496 0.773 0.698 0.549

DR06 0.945 0.740 0.710∗ 0.758 0.812 0.810 0.934

DR07 0.882 0.693 0.665 0.770 0.750 0.817 0.918

DR08 0.884 0.776 0.700 0.797 0.822∗ 0.816 0.804

DR09 0.882 0.841∗ 0.674 0.692 0.773 0.785 0.752

DR10 0.657 0.584 0.686 0.497 0.773 0.684 0.464

DR11 0.872 0.742 0.686 0.687 0.766 0.695 0.724

DR12 0.645 0.583 0.680 0.484 0.773 0.450 0.427

DR13 0.645 0.583 0.680 0.485 0.773 0.451 0.429

DR14 0.649 0.582 0.673 0.509 0.773 0.491 0.429

DR15 0.645 0.583 0.680 0.498 0.773 0.465 0.433

DR16 0.653 0.593 0.670 0.562 0.773 0.553 0.450

DR17 0.822 0.797 0.690 0.821∗ 0.755 0.773 0.909

DR18 0.720 0.615 0.651 0.756 0.773 0.726 0.749

DR20 0.700 0.589 0.652 0.686 0.759 0.688 0.626

Descriptors DPP4 FVII FXa FAAH HCV HIVP HIVB

FFSM 0.773 0.681∗ 0.868∗ 0.795 0.756 0.741 0.790

Sign3 0.780 0.627 0.845 0.791 0.776 0.819∗ 0.857∗

DRAL 0.461 0.429 0.457 0.401 0.440 0.458 0.461

DR01 0.542 0.443 0.533 0.762 0.525 0.568 0.602

DR02 0.468 0.453 0.465 0.401 0.440 0.465 0.460

DR03 0.631 0.660 0.549 0.628 0.588 0.517 0.599

DR04 0.605 0.511 0.665 0.796 0.571 0.583 0.637

DR05 0.507 0.510 0.481 0.483 0.443 0.486 0.483

DR06 0.814∗ 0.607 0.834 0.796 0.742 0.803 0.802

(Continued.)
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Table 2
Continued.

DR07 0.754 0.589 0.797 0.760 0.815 0.748 0.775

DR08 0.765 0.578 0.801 0.708 0.818∗ 0.726 0.775

DR09 0.764 0.582 0.734 0.553 0.784 0.747 0.780

DR10 0.496 0.484 0.484 0.484 0.460 0.493 0.478

DR11 0.653 0.516 0.645 0.542 0.523 0.561 0.570

DR12 0.461 0.429 0.457 0.401 0.440 0.458 0.461

DR13 0.461 0.437 0.460 0.402 0.439 0.458 0.461

DR14 0.469 0.431 0.460 0.451 0.441 0.458 0.465

DR15 0.464 0.431 0.458 0.403 0.440 0.458 0.461

DR16 0.516 0.417 0.481 0.438 0.458 0.461 0.500

DR17 0.733 0.633 0.822 0.841∗ 0.746 0.702 0.746

DR18 0.671 0.578 0.641 0.777 0.612 0.610 0.646

DR20 0.529 0.460 0.522 0.706 0.612 0.553 0.547

Figure 4. SVM prediction accuracy for some “best” descriptor sets: FFSM, Signature (h=3), DRAGON descriptor class 06,
07 and 18.

better than 17 DRAGON descriptors and equivalently to
the other three: DR06(2D autocorrelations), DR07(edge
adjacency indices), and DR17(functional group counts).
In addition, some single DRAGON descriptor sets con-
sistently performed better than other descriptor sets over
almost all the data sets. For instance, descriptor class
DR06, DR07, and DR17 generally outperformed all other
DRAGON descriptor sets. DR09 (topological charge in-
dices) and DR18 (atom-centered fragments) also showed
decent accuracy compared to other DRAGON descrip-
tors. Finally, using any single DRAGON descriptor class
almost always yielded better performance than using all
DRAGON descriptors together, and the reason might be
due to over-fitting.

One noteworthy phenomena was that DRAGON de-
scriptors performed significantly worse when they were
normalized than when they were not (data not shown),

with an average of 10–15% accuracy difference for most
data sets, and this difference was stable when we changed
the experimental repeating times from 10 to 30. One of the
reasons might be that each DRAGON descriptor has its
chemical, physical, or biological meaning, and normaliza-
tion will cause the descriptor to lose its real meaning, and
hence cannot characterize chemical compounds very well.
Please note that our results for DRAGON descriptors in
Table 2 were obtained without normalization.

This work demonstrated that it was really important
to carefully select DRAGON descriptor sets. Simply us-
ing all of them or randomly selecting some of them will
diminish the prediction performance. A combination of
DR06, DR07, DR17 and a few other DRAGON descriptor
sets would be a robust and optimal selection. In addi-
tion, the signature and FFSM descriptors were satisfac-
tory candidates for virtual screening and protein–chemical
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interaction prediction.
A major reason that the FFSM descriptors outper-

formed most DRAGON descriptors was that FFSM has im-
plicit functions of descriptor selection, since it only counted
frequent subgraphs and infrequent descriptors were re-
moved. In many cases, frequent subgraphs have been
proven to correspond to some biological or chemical struc-
tural motifs. FFSM descriptors can be a better method
if approximate matching of subgraphs was allowed. In
addition, signature descriptor also performed very excel-
lent after careful tuning of the parameters, partially since
they completely characterized a chemical by including ge-
ometrical and topological descriptors, atomic properties,
chemical bonding, and hydrodization information. Finally,
through our experimental results we should keep in mind
that no descriptors can be claimed the best for all data sets
and all situations, and our comparisons and conclusions
were made on a statistically average basis.

Our results and conclusions may be biased since only
the SVM classifier was used, therefore our study only
focused on limited scope of the subject of SVM-based
protein–chemical interaction prediction. Although using
other popular classifiers such as K-nearest neighbours,
neural network, and random forest is beyond the scope of
this paper, our study would be more complete and valuable
if comparisons based on those classifiers are included.

6. Conclusions

Prediction protein–chemical interaction is a challenging in
silico problem in bioinformatics and cheminformatics re-
search. Chemical descriptors are of key importance for
converting chemicals into descriptor vectors to be under-
stood by computers. In this paper, we conducted a compre-
hensive comparison of the performance of various chemical
descriptors based on SVM classification on 14 high quality
data sets. Our results shed light on selecting descriptor
extraction methods wisely to obtain best prediction per-
formance. Our experiments also demonstrated that FFSM
descriptors consistently outperform 17 of the 20 DRAGON
descriptor sets, and performed equivalently to signature
descriptors and the other three DRAGON descriptor sets.
With wise selection of some DRAGON descriptor sets,
we can earn robust and optimal performance for protein–
chemical interaction prediction. In the future, we would
perform similar studies for protein descriptors and also on
other classifiers such as random forest, K-nearest neigh-
bours, and neural network.
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