
Software Engineering, 2015

TEST CLUSTER SELECTION USING

COVER COEFFICIENTS

Mahadevan Subramaniam∗ and Parvathi Chundi∗

Abstract

Clustering test profiles to retrieve relevant tests is a recurring

theme in software validation. A novel clustering approach using

a probabilistic notion of coverage among line-based test profiles is

described. The approach automatically determines the number of

clusters to generate a clustering and can potentially group together

tests to execute a few distinct lines of code. A simple method to

identify tests affected by program changes is developed and used to

determine the retrieval effort needed for cluster-based retrieval of

affected tests. The approach is applied to four unix utility programs

from a popular testing benchmark. Our results show that comparing

original and new clusterings with respect to test cases is a promising

criterion for deciding the potential re-clustering points in software

evolution.

Key Words

Software testing, data clustering, regression, observation testing

1. Introduction

Recently, there has been a lot of interest in using clustering
algorithms to retrieve relevant tests from large test suites.
It has been empirically observed that tests revealing the
same fault usually exhibit similar runtime behaviours [1].
Clustering algorithms aim to leverage this correspondence
by grouping tests having similar execution profiles. The
generated test clusterings are sampled in different ways to
retrieve relevant tests to improve several software valida-
tion activities including observation-based testing [2]–[4],
regression test selection [5], [6], prioritization [7], mini-
mization [8] as well as fault localization [9].

This paper considers the use of clustering algorithms
for software regression testing where a new version of the
program has to be re-tested to ensure that it is function-
ing correctly. In this case, the outcome of a subset of
available tests, called affected tests, on the new version, is
analysed for validation. Informally, affected tests are tests
that execute a modified line of a program and/or whose
outcomes are affected by a program change. Analysing the
outcome of affected tests for conformance is usually more

∗ University of Nebraska Omaha, Omaha, NE 68182, USA;
e-mail: {msubramaniam, pchundi}@unomaha.edu

Recommended by Dr. Shihong Huang
(DOI: 10.2316/Journal.213.2015.4.213-1071)

expensive than running the tests. Cluster-based retrieval
uses clustering algorithms to group the affected tests based
on their profiles so that the tests whose outcomes are to be
analysed are judiciously retrieved.

In this context, after identifying the affected tests
regression testing can be performed in two ways. Either the
existing clustering that was generated using the original
program version can be reused or a new clustering based
on the test profiles obtained from the newer version can
be generated. In both the cases, the affected tests in the
clusterings are marked, and all the tests in every test cluster
whose seed is an affected test are retrieved to analyse their
outcomes.

A question that arises in the cluster-based retrieval of
affected tests is – whether the affected test retrieval using
the newer clustering structure is always better compared
to that using the existing structure. It is likely that the
existing clustering structure is not well suited to validate
a new version as the test profiles over the new version
are likely to be different than the existing ones, and this
may cause the tests to be grouped differently than before.
However, while the newer test clustering can be readily
generated, it may not reflect the best grouping of affected
tests in many situations. For instance, affected tests may
get widely distributed over the new clustering or seed of a
large cluster of highly similar unaffected tests may become
affected. In such cases and others, retrieving affected tests
using the existing clustering can lead to higher retrieval
quality with a lower effort.

In this paper, we develop a cluster-based approach
called the cover-coefficient clustering (C3) that retrieves
tests having similar behaviours to the affected tests
for software regression testing. It is inspired by the
cover-coefficient concept originally developed by Can and
Ozkarahan [10] to perform cluster-based retrieval of doc-
uments from text databases. A unique feature of this
approach is that it automatically determines the number of
clusters and the cluster seeds by analysing the input data.
Similarity among tests is characterized in the C3 approach
using an asymmetric, probabilistic notion of test coverage.
We develop a simple procedure to identify affected tests by
analysing test profiles and describe how the affected tests
are used to decide on the best C3 for validating a new
version.

The rest of the paper is organized as follows.
In Section 2, a brief overview of program execution profiles,

1

and clustering of data is given. Section 3 describes the
C3 approach to partition a test suite using test execution
profiles. Section 4 extends the approach to multiple ver-
sions. Procedures to identify affected tests by analysing
execution profiles are presented. Experiments and results
are presented in Section 5. Section 6 discusses related
work. Section 7 concludes the paper.

2. Background and Preliminaries

2.1 Test Execution Profiles

The execution profile of a test represents the runtime
behaviour of a test in the form of runtime events such as
the lines, blocks of code, branches, functions, and paths
[11]. This paper uses line-based test execution profiles
collected using the gcov (Gnu coverage) tool. A line-based
test profile is a collection of triples. The first element of
the triple is the execution status, the second element is
the source line number, and the last element is the code
content. The execution status has value 0 for the lines
executed 0 times by the test and has value 1 for the lines
executed one or more times by the test. The execution
status values from each test profile are collated into a bit
vector that is indexed by the line numbers. The bit vectors
from all test profiles are combined to form a Boolean
matrix (called E matrix below) which represents the profile
information for the entire test suite. The dimensions of the
Boolean matrix are given by the number of distinct line
numbers in all of the test profiles.

2.2 Clustering Methods

Clustering methods are widely used to identify similar
objects in a given group of objects [12]. The given set of
objects is typically partitioned into clusters, where each
cluster consists of similar objects. There are two classes
of clustering algorithms – iterative and non-iterative. An
iterative clustering algorithm such as K-means creates an
initial partitioning of objects into k clusters and iteratively
improves these clusters until some error criterion is met.
Iterative algorithms can be costly for large data sets and
need users to predict the number of clusters, which may be
difficult.

Non-iterative algorithms such as hierarchical agglom-
erative clustering and C3 compute a numerical value for
how similar (or dissimilar) each pair of objects are, in the
given group of objects. Hierarchical agglomerative cluster-
ing then starts with n groups (or clusters) each containing
a single object, merges the groups with the highest sim-
ilarity value, re-computes the similarity values with the
merged group as one of the objects and repeats the process.
Once objects are merged into groups, the step cannot be
undone, hence the algorithm is non-iterative. The hier-
archical agglomerative clustering process terminates when
sufficient number of clusters are generated or objects are
too far apart to be merged. The terminating condition is
again hard for users to predict.

The C3 algorithm [10] used in this paper is non-
hierarchical, non-iterative, and predicts the number of

clusters from the characteristics of the given data set and
performs very well in practice. The details of this algorithm
are described in the next section.

3. Cover-Coefficient Clustering (C3)

The C3 algorithm that was originally proposed by Can
and Ozkarahan [10] is used for clustering text databases
using keywords. In this paper, we use the C3 algorithm
to partition a group of tests into disjoint clusters based on
their execution profiles. Consider a test suite T consisting
of m tests whose execution profiles are bit vectors of size n.
The input data for C3 is represented by an m×n Boolean
matrix E consisting of these bit vectors. The rows of E
denote the tests of T , and the columns of E denote the
lines (of code) that are executed by at least one test of T .
Without any loss of generality, we assume that each test
in T executes at least one line that is, matrix E does not
have any rows or columns consisting entirely of zero-valued
entries.

A probabilistic notion of cover coefficients is used
to identify relations among tests based on their execution
profiles. Informally, the cover coefficient of a test with re-
spect to another denotes the extent to which the execution
profile of the first test is covered by that of the second one.
Cover coefficient cij of a test ti with respect to a test tj is
the probability that a line lk executed by ti is also executed
by tj . Let αi and βj are the reciprocals of the sum of the
entries in the ith row and the jth column of the E matrix,
respectively. The cover coefficient of row i with respect to

row j is: cij =αi × rij , rij =
n∑

k=1
(Eik ×βk × Ejk).

The cover coefficients of the tests in a test suite T
of size m is represented by a m×m matrix, C, whose
elements are computed using the above equation. Note
that the computation of the entry cij uses the profiles of
all the tests. In particular, the value of cij does not equal
the ratio of common number of lines executed by the two
tests over the total number of lines executed by the test ti.

The diagonal entry cii of the ith row is called the
decoupling coefficient of that row. The decoupling coef-
ficient of the C matrix, δ, is the mean value of the decou-
pling coefficients of its rows. If a test has a distinguishing
profile, it executes lines distinct from other tests and hence
its profile is not likely to be covered that of the other tests.
Therefore, it may be necessary to place this test in a sepa-
rate cluster. In general, we can estimate that the number
of clusters should be high (low) when there are a large
(small) number of distinguishing execution profiles, which
is specified by the de-coupling coefficient δ. Let nc be the
number of test clusters of a test suite T . It is estimated to
be nc =m× δ.

Test suite T is partitioned into nc (actually, nc +1
clusters as described below) clusters by first identifying
seed tests from T that are sufficiently dissimilar and cover
an adequate number of remaining tests. A single seed
test is identified for each of the nc clusters based on the
clustering power of the tests. The clustering power of test

ti is: Pi = cii × (1− cii)×
n∑

k=1
Eik.

2

To partition the tests in T into the clusters, the cluster
seeds are identified by ranking the tests in T based on
their clustering power. The top nc tests are chosen as
cluster seeds and are assigned to one cluster each. Ties
are broken arbitrarily. A test tj is considered a false
seed and eliminated if there exists a seed ti such that the
coefficients cii, cjj , cji and cij are sufficiently close, that
is, the magnitude of the pairwise difference of cii, cjj , cij
and cji are all within a specified threshold ε. In this case,
the false seed is eliminated, and the next seed in the sorted
order is picked. A threshold value of 0.001 was used based
on the spread of the seed values. However, no false seeds
were found in our experiments for our data set.

To populate the clusters, each remaining test ti of T
is assigned to a cluster whose seed tj maximally covers
ti, that is, cij is a maximal value, for 1≤ j≤nc. If more
than one seed maximally cover ti, the test is assigned to
the cluster whose maximal covering seed has the higher
clustering power (ties are broken arbitrarily). If there exist
tests in T that cannot be assigned to any of the clusters
because none of the seeds cover them, that is, cij =0 for all
seed tests tj , these tests are collected into a ragbag cluster,
[(nc +1)th cluster].

4. Affected Tests

An existing clustering structure may not be well suited to
validate a new program version as the test profiles over
the new version are likely to be different than the existing
ones, and this may cause the tests to be grouped differently
than before. One can always generate a new clustering
structure with each new program version. However, it is
not necessary that the new structure should be better than
the existing structure for validating the new version. In
many cases, certain tests called affected tests, which are
crucial for validating the new version, may be retrieved
more easily using the existing structure in comparison
to the new one. In such cases, performing cluster-based
retrieval of tests using the existing structure may produce
better results. Below, we describe a simple procedure to
identify affected tests by analysing test profiles.

A test is affected if it executes a significant num-
ber of modified lines with respect to the original and
new program versions and/or generates different out-
puts over these two versions. As tests executing large
number of modified lines may produce the same output
whereas different outputs may be produced while execut-
ing only a few modified lines, we use two values to iden-
tify affected tests – modification-revealing value (δr) and
modification-traversing value (δt).

Let R⊆T be the set of all modification-revealing tests
in a test suite T . The modification-revealing value of an
arbitrary set of tests A, A⊆T , δr(A)= |MR(A)|

|R| , where

MR(A) is the number of modification-revealing tests of T
appearing in A. The modification-traversing value of a test

t for a program version v is δt(t, v)=
∑

m∈M(v) fm∑
l∈L(v) fl

, where

line m is executed with frequency fm and line l is executed
with frequency fl in the version v by the test t. The set
M(v) is the set of the modified lines of v, and L(v) is the set

of all lines of v. The numerator is the total number of times
modified lines that are executed, and the denominator is
the total number of times all the lines that are executed by
the test t when it is run on v. The modification-traversing
value of a test t in general, δt(t)=max(δt(t, o), δt(t, n)),
is the maximum of the values over the original and new
versions o and n. The modification-traversing value of a
set of tests A, δt(A), is the average of the modification-
traversing values of the tests in A.

Definition (Affected-tests). Let 0<α, β≤1, respec-
tively, be the user specified modification-traversing and
modification-revealing thresholds. The set of affected
tests A is a subset of test suite T such that δt(A)≥α
and δr(A)≥β.

We choose the affected test set A that satisfies min-
imum requirements for both modification-traversing and
modification-revealing values so that both modification-
traversing/revealing tests are sufficiently represented in
set A. As modification-traversing tests need not be
modification-revealing, selecting tests solely based on the
threshold α may produce an A not having modification-
revealing tests. On the other hand, modification-revealing
tests may have very low α value, and selecting tests solely
based on threshold β may produce an A not having tests
that execute a large number of modified lines. Neither
outcome is helpful as it may cause the exclusion of certain
desirable tests from A. Note that the set A may not exist
for certain threshold values. Further, more than one choice
of set A are feasible for a given pair of threshold values.
Most modification-revealing tests are included in our ex-
periments when the threshold β is close to the value 1 and
α is a low positive value.

The main steps to find a set of affected tests of A from
suite T for given α and β values are:
1. Perform a diff of the source files of the original and

new versions and identify the modified lines.
2. Run test suite T on both versions to generate outputs

and gcov files for each test for each version.
3. For each test t, compute δr(t) using test outputs and

δt(t, v) using gcov files and modified lines.
4. Initially, let A⊆T be a set of tests whose elements

have a non-zero δt value. If δr(A)<β then the set
of affected tests is the empty set. Otherwise, sort A
based on δt values.

5. Eliminate low δt valued tests that are not modification-
revealing tests from the sorted list while maintaining
δt(A)≥α. Then, eliminate low δt valued tests that
are modification-revealing while maintaining δt(A)≥α
and δr(A) ≥ β. Return the resulting set of tests A.

5. Experiments

The objective of our experiments was to study whether re-
clustering must be performed for each new program version
or the existing clustering can be re-used for economical
retrieval of affected tests. Towards this goal, the proposed
approach was implemented on a 12G RAM, quad-core
machine running Ubuntu. We studied four programs from
the software infrastructure repository (SIR) [13] – Grep,

3

Table 1
Unix Utility Programs from Benchmark

Program No. of Non-faulty Faulty No. No. of

Lines Ver. Ver. Faults Tests

Grep 10,929 v1–v5 v6–v10 20 470

Gzip 6,357 v1–v5 v6–v10 16 213

Sed 8,059 v1–v7 v8–v14 3 404

Space 9,126 v2–v4 0 500

Gzip, Sed and Space whose details are depicted in Table 1.
The size of these programs ranged from 6,300 to 11,000 lines
of C code. For all programs, version v0 was used as the base
version. This version was modified by making code changes
and/or injecting faults (pre-defined in file, FaultSeeds.h) to
create several non-base versions. Five non-faulty and five
faulty versions were created and analysed for Grep and
Gzip, and seven non-faulty and seven faulty versions were
created and analysed for Sed. The faulty versions were
created by injecting, twenty faults in Grep, sixteen faults
inGzip and three faults in Sed. We analysed 38 non-faulty
versions for Space. No faulty versions for this program
were available in the benchmark. The program Grep
was accompanied by two test suites in the benchmark.
The larger test suite containing 470 tests was used. The
program Gzip was accompanied by five test suites in the
benchmark. The largest test suite comprised 213 tests
was used. For the program Sed, the two available suites
were joined to obtain a suite of 404 tests. A test suite
with 500 tests was used for the program Space. The
tests that produced different outputs compared to the
base version were viewed as fault-revealing tests in every
non-base version as no specifications were available in the
benchmark.

5.1 Retrieval Effort

A random clustering, R= {ρ1, . . . , ρq}, corresponding to a
C3, G= {G1, . . . , Gq}, has equal number and equal-sized
clusters as the latter except for the tests being randomly
assigned to the clusters in the former. Let A= {t1, . . . , tk}
be the set of affected tests belonging to a test suite T .
A test in T belongs to the test set A if and only if the test
either has a profile containing a modified line or produces
a different output compared to the base program version.
Let πG(A) be the number of clusters in G that contains
a test from A. Let πR(A)=P1 +P2 + · · · +Pq, where Pj

denotes the probability that the cluster ρj will contain a
test from A. The probability Pj is [10], [14],

Pj =

⎧⎪⎨
⎪⎩
(1−

n∏
i=1

(mj − i+ 1)

(m− i+ 1)
, k ≤ mj

1, k > mj

Above, mj =m – size of (ρj). If k≤mj , the product
computes the probability of choosing all the tests of the set

A from clusters other than the cluster ρj . The complement
of this product then gives the desired probability. If k >mj ,
it is not possible to choose all the tests of A without
the cluster ρj and hence Pj =1. The retrieval of the
test set A using G is more economical compared to R, if
πG(A)≤πR(A). Below, we will use π(A) instead of πG(A)
to refer to the retrieval effort using the C3.

To determine re-clustering points, our experiments
compared the retrieval of a given affected test set A using
the original (o) and the newer (n) C3s generated from the
base and the non-base versions, respectively. Measures
consisting of the values πo(A) and πn(A) across the two
clusterings and δo =πR(A)−πG(A) for the base version
and δn =πR(A)−πG(A) for the non-base version were used
to compare the retrieval effort across versions. The retrieval
effort using the original clustering is more economical if
[πo(A), δo(A)] is lexicographically lesser than or equal to
[πn(A), δn(A)], and vice versa.

5.2 Experimental Procedure

For each non-base version of each program, the following
steps were carried out – (1) C3 and the corresponding
random clustering were generated for both base and non-
base versions. (2) Procedure to identify the set of affected
tests, A, was invoked with the thresholds α=0.25 and
β=0.75. The set A consisted of tests that exhibited at
least 25% difference over the test profiles when compared
to the base version and included at least 75% of fault-
revealing tests. (3) The differences over a test’s profile
were determined by comparing the corresponding rows in
the E matrices of the non-base and base versions. (4) The
economy of retrieval of affected tests was determined by
computing the retrieval measures π and δ for both the base
and the non-base versions and performing a lexicographic
comparison.

5.3 Results

The results obtained for all the four programs are de-
picted in the four bar graphs in Fig. 1. The X-axes in
these graphs specify the program version numbers, and the
Y -axes specify the number of clusters retrieved from the
clustering of the base versionGo, the non-base versionGn,
δs, for the base version do, and for the non-base version dn.
Our results showed that retrieval using the base version is
equally likely to be more economical than that produced
using the newer versions; the retrieval using the newer ver-
sion was more economical than that using the base version
for the programs Grep and Space while that using the
base version was more economical for the programs Gzip
and Sed. We elaborate our results below.

For Grep, around 7–9 clusters were retrieved using
original clustering, and around 5–9 clusters were retrieved
using the newer clustering. Based on the π and δ values,
it was concluded that retrieval using the original clus-
tering had comparable performance with that using the
newer clustering for v3 and v5, whereas for the remaining
eight versions, using the newer clustering was more eco-
nomical. The savings in the retrieval effort due to the

4

Figure 1. Test retrieval across base and non-base versions for Grep, Gzip, Sed and Space.

newer clustering ranged from 15% to 30% in these eight
versions.

For Gzip, around 1–4 clusters were retrieved using the
original clustering, and around 2–5 clusters were retrieved
using the newer clustering. Retrieval using the newer
clustering was more economical, for versions v3 and v8 with
both the π and the δ values were better than their original
clusterings. For the remaining eight versions, retrieval
using the original clustering was more economical. The π
values of the original clustering were the same or better
in all these cases. The δ values of the original clustering
were better in all cases except for version v10. Therefore,
in all these cases, retrieval can be performed using the
original clustering whereas re-clustering can be used for
maintenance.

For Sed, about 1–6 clusters were retrieved using the
original clustering, and around 1–7 clusters were retrieved
using the newer clustering. The original and the newer
clusterings have comparable retrieval performances for ver-
sions v1 and v6. The π and δ values were the same as those
using the original clustering in these cases. Retrieval using
the original clustering was more economical in all other
cases. For versions v4 and v5, the π values were the same
as those for the original clustering whereas the δ values for
the original version were better. For the remaining six ver-
sions, the π values using the original clustering were better.
These results suggest that for Sed, it may be better to
retrieve tests using the original clustering and perform re-
clustering primarily for maintenance in all these versions.

For Space, around 1–7 clusters were retrieved using the
original clustering, and around 1–5 clusters were retrieved

using the newer clustering. The retrieval effort using the
newer clustering was better compared to that using the
original clustering in all the 10 cases. For versions v1–v6
and version v9, the π values were the same as those for
the original clustering. For versions v7, v8 and v10, the
π value was significantly better compared to the original
clustering. These results suggest that retrieval using the
newer clustering leads to better performance in all the
versions of Space.

5.4 Limitations and Threats to Experimental
Validity

The threats to external validity are with respect to the
generalizations of the results. We have not considered real
industrial programs where the code base, platforms and
versioning can be much more involved including branching.
However, we have used the programs from a popular testing
benchmark which we believe reasonably represent real-
world programs in terms of code, test suite sizes and
versions. Besides the correctness of data collection and
correctness of the analysis code, the threats to internal
validity concern the effectiveness of the algorithm for highly
sparse matrices and affected tests.

We mitigate the first concern by using a pseudo-
random procedure to generate several E matrices of vary-
ing sparsity to compare the estimated and computed values
of number of clusters and their average sizes. System-
atic methods to generate highly sparse matrices can be
employed to further validate our results in this direction.
To study the performance with respect to affected tests,

5

we generated different sets of affected tests by randomly
choosing the lines of interest that must be executed by
these tests. Affected tests based on techniques described
in [15] can be empirically studied to further validate our
results.

6. Related Works

Amman and Knight [1] empirically observed that tests
revealing the same fault often exhibit similar runtime be-
haviours. Clustering techniques provide one way to exploit
this correspondence by generating clusterings in which
tests with similar profiles are grouped into one cluster.
These clusterings can be sampled in different ways to find
faults, analyse a fault in detail to come up with compre-
hensive fixes and so on. Earlier works have applied cluster-
ing techniques to improve several testing aspects including
observation-based testing [2]–[4], [16], regression test se-
lection [6] and test suite minimization and prioritization
[17], [7].

In general, the above applications of clustering have
mostly employed Boolean valued function call test profiles
and used some variants of the K-means clustering along
with Euclidean distance. In [7], Boolean, line-based pro-
files are used, and the analysis is performed using agglom-
erative hierarchical clustering with the hamming distance.
The number of clusters and the initial seeding of these
clusters are manually chosen in all of these works. The C3
approach described in this paper is inspired by the cover-
coefficient concept originally proposed by Can and Ozkara-
han [10] and is significantly different from the earlier
clustering approaches. The C3 approach is nonhierarchical,
non-iterative, and uses a probabilistic notion of similarity
between two tests that depend on all the available profiles
and not just those of the two tests being compared (unlike
Euclidean distance and its variants). The C3 approach
also automatically determines the number of clusters and
performs initial seeding of these clusters.

The approach in our paper is similar in spirit to
observation-based testing where clustering techniques are
used to selectively examine test outcomes after running
them. Like observation-based testing we also assume that it
is much more expensive to examine test outcomes than run-
ning them and therefore, it is crucial to judiciously choose
the tests to be analysed. However, the proposed work is
focused on regression testing, where the behaviours of a
subset of available tests, the affected (or fault-revealing)
tests, are of primary interest. Retrieving affected tests
from a clustering is usually very different from retrieving an
arbitrary group of tests as the distribution of affected tests
over a clustering depends on a variety of factors including
the impact of program changes on the test profiles, the
noise due to the unaffected tests and so on. In this sense,
our work may be viewed as extending the above works on
observation-based testing to the regression testing context.

A unique aspect of our work is the comparison of mul-
tiple clusterings for performing cluster-based retrieval of
affected tests. In most of the earlier works, only a sin-
gle clustering has been considered for regression testing
whereas as demonstrated by our experimental results, it

may be worthwhile to compare which among the original
and the new clustering structures is more appropriate to
perform retrieval for regression testing. Another contribu-
tion of our work is a novel, empirical (non-safe) approach
based on execution profiles to identify affected tests. To
the best of our knowledge, this is the first application of
the C3 approach to cluster test cases based on their exe-
cution profiles for testing individual and multiple program
versions.

7. Conclusion

This paper developed a novel approach for cluster-based
retrieval of tests for regression testing. A clustering ap-
proach based on the C3 was introduced to cluster tests
based on their Boolean valued line profiles. Unlike typical
clustering approaches, the number of clusters and the aver-
age size of clusters are automatically determined by the C3
approach without any additional user input. A novel and
simple method was developed to identify the set of affected
tests for regression testing based on the test profiles. The
approach was applied to several programs (including sev-
eral new and faulty versions) from the testing benchmark
SIR [13]. Our results show that the retrieval of affected
tests from an original clustering is likely to lead to better
retrieval of affected tests in many cases compared to that
using the newer clustering and hence must be considered
before discarding the original clustering.

References

[1] P.E. Amman and J.C. Knight, Data diversity: An approach
to software fault tolerance, IEEE Transactions on Computers,
37(4), 1998, 418–425.

[2] W. Dickenson, D. Leon, and A. Podgurski, Finding failures
by cluster analysis of execution profiles, Proc. of International
Conf. on Software Engineering, 2001, 339–348.

[3] W. Dickenson, D. Leon, and A. Podgurski, Pursuing failure:
The distribution of program failures in a profile space, ACM
SIGSOFTSymposium onFoundations of Software Engineering,
2001.

[4] D. Leon, A. Podgurski, and L.J. White, Multivariate visual-
ization in observation-based testing, International Conf. on
Software Engineering, 2000.

[5] B. Guo, M. Subramaniam, and P. Chundi, Analysis of test
clusters for regression testing, International Workshop on
Regression Testing, International Conf. on Software Testing
(ICST), 2011, 736.

[6] C. Zhang, Z. Chen, Z. Zhao, S. Yan, J. Zhang, and B. Xu,
An improved regression test selection technique by clustering
execution profiles, International Conf. on Quality Software,
2010.

[7] S. Yoo, M. Harmon, P. Tonella, and A. Susi, Clustering test
cases to achieve effective and scalable prioritization incorporat-
ing expert knowledge, International Symposium on Software
Testing and Analysis, ACM, New York, 2009.

[8] V. Vangala, J. Czerwonka, and P. Talluri, Test case compar-
ison and clustering using program profiles and static execu-
tion, ACM SIGSOFT Symposium on Foundations of Software
Engineering, 2009.

[9] E. Wong and V. Debroy, A survey of software fault localization,
Technical Report, Department of Computer Science, University
of Texas at Dallas, UTDSCS-45-09, 2009.

[10] F. Can and E.A. Ozkarahan, Concepts and efffectiveness of the
cover-coefficient-based methodology for text databases, ACM
Transactions on Database Systems, 15(4), 1990, 483–517.

6

[11] M.J. Harrold, G.Rothermel, R.Wu, and L.Yi, An empirical
investigation of program spectra. ACM Workshop on Program
Analysis for Software Tools and Engineering, 1998.

[12] A.K. Jain and R.C. Dubes, Algorithms for clustering data
(Prentice Hall, 1988).

[13] H. Do, S. Elbaum, and G. Rothermel, Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact, Empirical Software Engineering, 10(4),
2005.

[14] S.B. Yao, Approximating block accesses in database organiza-
tions, Communications of ACM, 20(4), 1977, 260–261.

[15] S. Yoo and M. Harman, Regression testing minimization,
selection and prioritization: A survey, Software Testing, Veri-
fication and Reliability, 2010.

[16] A. Podgurski, W. Masri, Y. Mccleese, and F.G. Wolff,
Estimation of software reliability by stratified sampling, ACM
Transactions on Software Engineering and Methodology, 8(3),
1999.

[17] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, Priori-
tizing test cases for regression testing, IEEE Transactions on
Software Engineering, 27(10), 2001.

Biographies

Mahadevan Subramaniam is
an associate professor of com-
puter science at the University of
Nebraska-Omaha. He has a B.E.
degree in computer science from
the Birla Institute of Technology
in India and a Ph.D. degree in
computer science from the State
University of New York at Al-
bany. His research interests are
formal methods, modelling and
simulation and testing of hard-

ware/software systems. He has significant industrial ex-
perience in architecting high-end hardware and system
designs. He has published more than 70 conference and
journal papers in leading IEEE, ACM conferences and
international journals. He is the director of the Modeling
and Simulation Lab at the Peter Kiewit Institute in the
University of Nebraska-Omaha.

Parvathi Chundi is an associate
professor in the computer science
department at the University of
Nebraska-Omaha. She has a B.E.
degree in computer science from
Anna University, India, and a
Ph.D. degree in computer science
from the State University of New
York at Albany. She has exten-
sive research experience in the ar-
eas of information retrieval, data
mining and databases. She is the

director of the Big Data Lab, holds five US patents and has
published more than 50 research papers in journals such
as the Springer’s Data Mining and Knowledge Discovery
Journal and conferences such as the SDM and CIKM. She
also has several years of industrial research experience in
research labs such as the HP Labs.

7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

