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ABSTRACT  

Manual quantitative and qualitative microscopic analysis 

of cancerous tumours is subject to inter-intra observer 

variability in pathology. Neuroblastoma is an infant 

cancer with one of the lowest survival rates. Choosing a 

proper therapeutic regime for the tumour is highly 

dependent on determining the tumour aggressiveness level 

which requires an extensive microscopic analysis. There 

is an urgent demand from pathologists for reducing the 

role of microscopic analysis in the process of prognosis 

and using an automated system to determine the tumour 

aggressiveness. In this paper, we develop an automated 

system to address this demand. We propose a novel four-

stage hybrid algorithm. First, we develop novel whole 

slide image partitioning and zooming techniques. Second, 

we introduce an image enhancement technique to reduce 

the intensity variation within the tissue images. Third, we 

deploy a thresholding technique for segmenting the 

regions of interest. Fourth, we develop a prognosis 

decision making engine based on a robust clinical 

prognosis scheme to classify the aggressiveness level 

using the segmented regions of interest. The performance 

of the system is evaluated by a pathologist. The system is 

compared against a state-of-the-art system, and the results 

indicate a superiority for our system in grading the tumour 

with average F-measure 86.77%. 
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1. Introduction 

 
Cancer is the common term for all malignant tumours and

 Neuroblastoma is an embryonal tumour of the 

sympathetic nervous system [1]. Neuroblastoma accounts 

for 15% of childhood cancer deaths and the incidence 

peak is between 0 to 4 years [2]. Early diagnosis of low 

and intermediate risk neuroblastoma increases the survival 

chance of patients. The prognosis of Neuroblastoma 

Tumour (NT) is associated to several factors, and 

microscopic grading for determining the tumour 

aggressiveness level is one of the most important. 

Microscopic grading is the study of quantity and quality 

of the different histological regions within the tissues. 

Level of aggressiveness depends on degree of tumour 

maturation and differentiation. Several grading systems 

have been proposed for identifying the neuroblastoma 

degree of differentiation over the years. The Shimada 

grading scheme [2] is an accurate and popular system 

among pathologists for classifying neuroblastoma. It 

groups NTs into six different categories which among 

those undifferentiated and poorly differentiated categories 

require intensive quantitative and qualitative analysis. 

Analyzing the whole slide under the microscope is a time-

intensive and error-prone task. As a result there is a 

demand from pathologists for a consistent and automated 

system that performs quantitative and qualitative analysis 

on the whole tumour to enhance the accuracy of prognosis 

for tumours [3, 4]. Higher prognosis accuracy results in 

determining the most appropriate therapeutic regime.  

The aim of this paper is to develop an automated and 

robust system to perform quantitative and qualitative 

analysis throughout whole tissue slide images of NT. The 

system assists pathologists by determining the degree of 

differentiation of NTs. This means that the system 

classifies NTs into undifferentiated, poorly differentiated 

or other types. However, there are three main issues with 

developing such a system: 1) analyzing the whole tumour 

tissue slide, 2) low image quality of the tissue tumours 

and 3) making an accurate prognosis decision.  

The first issue derives from the fact that pathologists 

identify different types of histological region under the 

microscope based on their color. The images that are used 

in the experiments in this paper are derived from H&E 

stained tissue glass slides. Hematoxylin & Eosin is the 

most widely used method because of its diagnostic 

capability which is enhanced by the strong contrast 

between structures of different composition. However, the 

main drawback of H&E stained images for computerized 

analysis is inconsistency in staining the same type of 

histological regions with a unique color. For example, two 

separate cellular regions in different locations of a slide 

may be stained with different shades of blue. The colour 
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variation reduces the performance of the system in 

detecting different types of histological regions. The 

second issue is the enormous size of the whole digital 

slide images. For histological analysis of a tissue it is 

necessary to evaluate the image under higher 

magnification than the initial. The size of each 

histological image is 1.5GB on average which imposes a 

intensive computational load on the system. Moreover, to 

accurately analyze the different histological regions, 

pathologists usually evaluate the slides on 10X, 20X or 

40X magnifications under the microscope [5]. 

Automatically zooming into the images is a challenging 

task which plays an important role in achieving higher 

performance by the system. The third issue is designing 

an accurate prognosis decision-making engine to grade 

the NTs. Many automated systems do not answer the real 

clinical needs of biologists, because they do not follow an 

appropriate clinical prognosis scheme.  

Several automated systems have been proposed for 

different biological purposes. For example, [6] extracts 

the gland from prostate tissue images using texture 

features for the gland components such as stroma, lumen 

and nuclei. The system then exploits the K-means 

clustering technique to group the components into three 

clusters. Finally, it grades the gland according to the ratios 

of the components. [7] proposed a system for automated 

localization, segmentation and grading of breast cancer 

nuclei using a neural network. The proposed neural 

network learns from the cluster shapes and it grows by 

creating a new cluster based on the previously identified 

clusters. [8] developed a computer aided diagnosis system 

for assisting pathologists in the grading of Follicular 

Lymphoma. The system identifies basic histological 

structures in the image and models the connected 

components of such regions using ellipses. A set with a 

wide range of features is constructed from this 

intermediate representation to characterize the tissue. 

Using this representation, the relative amounts and spatial 

distributions of these histological components are 

measured to determine the grade of the follicular 

lymphoma tumour.  

A common issue with many automated systems and the 

above-stated systems is their sensitivity to the low quality 

of images and intensity variation between the histological 

regions within the images. This sensitivity reduces the 

accuracy of the system in the segmentation process. 

Moreover, the systems are incapable of analyzing the 

whole slide images, and they do not analyze the tumour 

under different magnifications. This means that a user 

must provide the images with an appropriate 

magnification for a histological analysis. Finally, they do 

not follow a clinical prognosis scheme for grading the 

tumours. 

This paper proposes three main contributions: In the 

first contribution, we propose a whole slide image 

analysis technique with a novel multi-scaling algorithm 

for analyzing the tumour tissues under different 

magnifications. The algorithm divides the images into a 

number of square partitions. It then expands the spatial 

domain of each partition and interpolates new pixels to 

the expanded spatial domains. In the second contribution, 

to enhance the quality of the image, we develop an 

algorithm in two stages, namely global and local intensity 

variation reduction techniques. The global approach 

reduces the intensity variation throughout the images. The 

local approach mosaics the images by grouping the 

constituent pixels of the same type of histological regions 

and unifying their intensity values. In contribution 3, we 

develop a prognosis decision making engine to classify 

the NTs into three categories namely, undifferentiated, 

poorly differentiated and others. To this end, we develop a 

set of computerized rules based on the robust clinical 

diagnosis scheme proposed by Shimada et al. [2]. 

The rest of this paper is organized as following. Section 

2 indicates the biological domain of the research. Section 

3 describes image acquisition and the deployed software. 

Section 4 explains the methodology, our proposed whole 

slide analysis algorithm, the proposed rescaling approach, 

the introduced pre-segmentation and segmentation 

algorithms. Section 5 shows the system validation 

approach. Section 6 illustrates the results and finally the 

last section contains the conclusion. 

2. Biological Domain 

 
Neuroblastoma tumours are embryonal malignancies of 

the sympathetic nervous system which originate from the 

neural crest. The prognosis of NT is related to several 

factors: 1) age of the patient, 2) location of the tumour, 3) 

surgical staging, and 4) microscopic grading [5]. The first 

three factors can usually be determined accurately and 

easily by pathologists; however, determining microscopic 

grading requires extensive analysis of different 

histological regions and histological structures within the 

tumour tissue under the microscope. Microscopic grading 

of neuroblastoma indicates the degree of differentiation of 

the tumour, which can be used to determine the 

aggressiveness level of the tumour. According to Shimada 

et al [2] there are six different categories for NT of which 

undifferentiated and poorly differentiated are the most 

aggressive types. Determination requires extensive 

qualitative and quantitative microscopic analysis. The 

main morphological features of these two types of NT are 

high cellularity and neuropil regions. Cellular regions are 

stained blue by H&E and neuropil regions are pink in the 

histological slides. Neuropil is a region between neuronal 

cell bodies in the gray matter of the brain and spinal cord. 

Poorly differentiated NT is a highly cellular tumour of 

which more than 2% of the tumour contains neuropil 

regions [2]. Undifferentiated NT is a highly cellular 

tumour with indiscernible neuropil regions [2]. The other 

types of NT have normal cellularity status. High 

cellularity is a marker for undifferentiated and poorly 

differentiated types only. Figure 1 indicates different 

types of NT. 
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Figure 1 a) undifferentiated with high cellularity and 

indiscernible neuropil, b) poorly-differentiated with 

considerable neuropil, c) an example of one of the other 

types of NT with huge neuropil and normal celllarity. 

 

3. Image Acquisition and Software 

All of the images used in this research were provided by 

the Tumour Bank of The Kid’s Research Institute at The 

Children Hospital at Westmead (CHW). All the images 

are derived from NTs. The Tumour Bank is compliant 

with national legislations and Declaration of Helsinki. 

 The dataset contains multiple tissue spots from multiple 

tissue arrays which are scanned by the Aperio ScanScope 

system. Figure 2 indicates a tissue array which contains 

125 tissue spots. Different tissue spots contain different 

types of histological regions and histological structures 

and they are taken from different NTs. To construct the 

dataset, we crop 60 tissue spots in a way that the numbers 

of undifferentiated, poorly differentiated and other types 

are equal. Each of the test set and the training set contains 

30 images of the tissue spots, and each of the sets contains 

10 undifferentiated, 10 poorly-differentiated, and 10 other 

types of NTs. The format of the images is TIFF and their 

height and width are 5000X5000 pixels in average. 

 All the algorithms were developed using MATLAB 

(The MathWorks, Inc., Natic, MA) and experiments were 

run on a computer with 2X3.47 GHz processors and 12 

GB RAM. 

 

Figure 2 An example of a tissue array that is used in our 

experiments. (1X magnification).  

4. Discussion 

 
To classify the type of NT into undifferentiated, poorly-

differentiated and others, the cellularity status of the 

tumour and the amount of neuropil regions must be 

determined. To this end, we propose a novel algorithm 

which contains five main sections as shown in Figure 3. 

The outcome of each of the sections is as following, 1) 

square partitioning: partitioning the whole slide images 

into several blocks of square shape to deal with the high 

computational load imposed by the huge size of images.   

2) Multi-scale analysis: rescaling the images and 

analyzing them under different magnifications. 3) Pre-

segmentation: enhancing the image quality by reducing 

the intensity variation. 4) Segmentation: locating and 

extracting the cellular regions and neuropil regions. 5) 

Prognosis decision engine: classifying NT into 

undifferentiated and poorly differentiated and other types 

based on the Shimada classification. 

 

4.1 Whole Slide Analysis by Square Partitioning 

 

To increase the accuracy of the prognosis it is necessary 

to analyze the whole tissue slide. We found that the size 

of each slide was 1.6GB on average, and an image with 

such an enormous size contains millions of pixels, which 

makes the image processing computationally expensive. 

To address this challenge we developed a square 

partitioning approach to divide the image into multiple 

sub-images, and we analyze them individually. 

 The size of original image is mn  where n is width and 

m is height of the image. Each image is partitioned into 25 

square shaped blocks as shown in Figure 4. All the blocks 

are equal in size except the blocks at the last column and 

row which are indicated by blue solid line. To determine 

the size of blocks we calculate their width and height by 











5

n
d  and 











5

m
k  respectively. We consider the size of 

the first 16 blocks equal to 



d  k. In Figure 4, the red 

dashed lines contains the first 16 blocks. We then 

compute the width and height of blocks at the last column 

and row by 



i  n  4d  and



j m  4k  respectively. Each 

of the constructed blocks is considered as an individual 

sub-image. 

 
Figure 4 A partitioned image with 25 blocks. Squares 

within the red dashed line are all equal in size. 

 

Figure 3 Overview of our system.  
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 4.2 Multi Scale Analyses  

 

The tumour tissues on the glass slides are fixed with their 

original size and this does not show their histological 

details. To analyze the histology of the tissues, 

pathologists must analyze them under higher 

magnification. Pathologists usually use 10X, 20X and 

40X magnification for analyzing the tissue [5]. Thus, the 

system must zoom into the images for automatically 

analyzing the tissue histology. However, the main 

challenge is rescaling the image in such a way that it 

preserves the quality of the image and keeps the necessary 

details. As a result, we develop a two stage algorithm to 

rescale each of the sub-images obtained from our square 

partitioning as follows: 1) expanding spatial domain of the 

image, and 2) interpolating pixels to the empty spaces by 

assigning the associated intensity values to the new empty 

spaces.  

 

4.2.1 Spatial Domain Expansion 

 

We map the distribution of pixels in the original image to 

a matrix 



Onm  where n and m are the total number of 

pixels in height and width of the image respectively. We 

then construct a new matrix 



Exy  that contains the spatial 

coordinates of the pixels in the rescaled image, where 



x  z*n ,



y  z*m and z is the magnification factor. All 

the pixels in O are transferred to their new spatial 

coordinates in E. For example, two neighbour pixels with 

coordinates 



p(i, j ) and 



p(i, j1) in matrix O are located at 

coordinates 



p(zi,z j )  and 



p(zi,z( j1))  respectively. This 

means that between each two neighbour pixels in E there 

are z-1 empty slots. 

 

4.2.2 Pixel Interpolation 

 

To fill out the z-1 empty slots between the two neighbour 

pixels in E, we must determine their intensity values. To 

this end, we use the intensity values in O as following. 

Suppose 



p(i, j )  and 



p(i1, j )  are two neighbour pixels in 

O. To calculate the intensity values for the z-1 empty slots 

between these two pixels in E, we use  

                 



v 
I p( i, j1)  I p( i, j ) 

z
       (1) 

where I(p) is the intensity value of the pixel p. We then 

fill the empty slot next to the pixel with the smaller 

intensity value by: 

     



sx,y min(I(p(i, j )),I(p(i, j1)))v      (2) 

where x and y are the coordinates of the slot in E. Then 

the intensity values of the next empty slots are equal to 

the intensity values of the previous empty slots plus v. We 

repeat this until all slots between the two neighbour pixels 

receive their values. We apply the developed algorithm on 

each of the sub-images. The results of our experiments 

indicate that for 20X magnification (z=20), our system 

achieves the highest accuracy in terms of making 

prognosis for NT with minimum mathematical expenses.  

 

4.3 Pre-Segmentation 

 

The low quality and the high intensity variation of the 

images significantly reduce the performance of locating 

and segmenting histological regions. Thus, before 

histological analysis the issues with the image quality 

must be addressed. To this end, we develop a novel 

algorithm that consists of two stages: global intensity 

variation reduction and local intensity variation reduction. 

  

4.3.1 Global Intensity Variation Reduction 

 

Using this technique we decrease the intensity variation 

throughout the entire image. To this end, the smallest 

RGB color cube which contains all the existing colors of 

the original image is found. Then the colors along the 

longest axis of the color cube are sorted using a median 

cut algorithm [9], which divides the longest axis of the 

color cube into two boxes at the median point. This 

process is repeated until the color cube has been divided 

into ß boxes. Each of the boxes contains an approximately 

similar range of colors. All the colors falling into each 

box are mapped to the color value at the center of the box. 

The empirical results show that ß = 16 provides the best 

performance. Figure 5 shows the outcome of our global 

intensity variation reduction technique. 

 
Figure 5 a) original image, b) global intensity variation 

reduction. 

4.3.2 Local Intensity Variation Reduction 

 

 To reduce  the  intensity  variations between  the 

constituent pixels of the same histological regions, pixels 

with similar intensity and spatial domain are assigned to 

the same groups and we unify their intensity. To this end 

we propose a two stage algorithm partitioning the images 

into several mosaics and unifying the intensity variations 

within each of the mosaics.  

 Mosaicking the Image: The mosaicking technique 

divides the images into several areas. Each of the areas is 

constructed by homogeneous pixels in terms of the joint 

spatial-intensity domain. The spatial domain indicates the 

location of the pixel within the image and the intensity 

value indicates the color of the pixel. Intensity of the 

pixels is one of the major criteria for grouping them. 

Thus, the pixels must be analyzed in a color-space that 

represents the intensity differences between the pixels in a 

K 
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(5) 

uniform way. As a result, we transform the initial color-

space of the images, RGB, to L*u*v*. In contrast to 

L*u*v*, the RGB color-space is not perceptually uniform 

because differences between colors cannot be determined 

by mathematical relations. 

 We consider a feature-space for each pixel with 5 

features, namely its x and y coordinates, and its L*, u* and 

v* channels. To group the homogenous color pixels we 

deployed our modified mean-shift algorithm [10, 11]. We 

define the kernel K(X) for the pixel in L*u*v* color-space 

as following:     

 
where C is the normalization constant, 



hS  is spatial 

bandwidth, 



hI is intensity bandwidth, 



X S  is spatial 

domain of pixel X, 



X I is the intensity value of a pixel in 

3-d vector, and k is the profile of the kernel. We then 

deploy a density estimator using the kernel K(X) in (3) by: 

where 



X i is the pixel i, in the image, and n is the total 

number of pixels. By employing the profile function k of 

the kernel, the density estimator in (4) becomes, 

 
In mean shift, the modes of density lie where the gradient 

is zero [12], thus the gradient of density estimator in (5) 

becomes, 

 
then by defining, 

                                          (7) 

the new kernel G(X) is derived as  

         
where 



cg,2,3 is the normalization constant. Then 

substituting g(X) into (8) yields, 

 

   
 

 
Using the expression in (9) the homogenous pixels in 

terms of joint intensity-spatial domains form a mosaic. 

This means each mosaic represents a specific histological 

region as shown in Figure 6.  

Intensity Unification for Each Mosaics: The last step in 

pre-segmentation is to unify the different intensity values 

between the pixels of the same mosaic. To this end the 

mean intensity value of the constituent pixels of each 

mosaic is computed. Then the color of pixels in each 

mosaic is unified to the associated mean value. Figure 7 

shows an image after applying pre-segmentation. 

 
Figure 6 a) The image after global intensity unification, 

b) the constructed mosaics on the image. 

4.4 Segmentation 

 

Each histological region has a specific morphology in the 

tissue slide, and each has a correspondingly specific 

numerical pattern in the image. Segmentation techniques 

are used to locate and extract these numerical patterns.     

Because the main focus of this paper is not segmentation, 

we use the segmentation approach in [13] which deploys 

the well known, simple, yet efficient adaptive 

thresholding approach based on the Otsu method [14] for 

segmenting the cellular and neuropil regions. The Otsu 

method efficiently and accurately determines a different 

range of intensity values using the grey-level histogram of 

the pixels in the images with low range of intensity 

variation. Our proposed pre-segmentation technique 

reduces the intensity variations between the pixels in the 

images. Therefore, the Otsu method provides high 

performance in terms of segmenting the regions of 

interest. We apply the Otsu method to the Luminance 

channel (L*) of the pixels only to find the optimum 

threhsolding. The reason for this is that the Otsu method 

only analyzes the gray-level histogram of the pixels, and 

the two other channels provide chrominance information. 

The output of the segmentation is a binary 

foreground/background image where the foreground 

consists of constituent pixels of regions of interest such as 

cellular regions and neuropil regions and the background 

is 0. Figure 8 illustrates the results of segmenting cellular 

and neuropil regions. 

 
Figure 7 a) is the original image, and b) is the image after 

applying pre-segmentation. 

4.5 Prognosis Decision Engine 

We develop a prognosis decision making engine to 

analyze the information obtained from the segmented 

histological regions. To this end, we propose a set of 

(6) 

(8) 

(9) 

(3) 

(4) 
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computerized rules based on Shimada scheme to classify 

the differentiation degree of NTs using the neuropil 

regions and cellular regions obtained by the segmentation. 

Figure 9 illustrates an overview of our prognosis engine.  

 To determine the amount of neuropil regions within the 

image, the prognosis engine calculates the ratio of 

neuropil regions to the summation of cellular regions and 

neuropil regions using the following expression: 

                        



NR 
np

cp  np
           (10) 

 
Figure 8 a) the input images, b) the segmented cellular 

regions, and c) the segmented neuropil regions. 

 

where np is the total number of constituent pixels within 

the neuropil regions and cp is the total number of 

constituent pixels within the cellular regions.  

 To determine the cellularity status of the tumour, we 

first compute the ratio of the cellular regions in the tissue 

  



CR 
cp

cp  np
                      (11) 

The cellularity status of the tumour is measured using 

  



CS 
CR  T,

otherwise,

HC

Normal





  (12) 

where T is a threshold that discriminates the high cellular 

tumours from normal tumours. Pathologists estimate 

cellularity status of the tumours by eye and there is no 

predefined threshold value to discriminate high cellular 

tumours from normal tumours. As a result, we train our 

system based on decisions of two pathologists, one from 

CHW and the other one an independent pathologist to 

tune T=43.5 empirically on the 30 training images. We 

used the training set of images for this purpose. We then 

developed Algorithm 1 to determine the type of NTs. 

 

Algorithm 1 Classifying NT  

Step 1: 

Apply expression in (11) and (12) to determine the 

cellularity status of the tumour.  

if Normal then NT        Others. 

otherwise, Step 2.   

Step 2: 

Apply expression (10) to determine the ratio of Neuropil 

regions. 

if NR>0.02 then NT        Poorly-differentiated. 

otherwise, NT        Undifferentiated. 

 

5. System Validation 

 
All the results obtained by the system in this paper were 

validated by a pathologist from the Department of 

Histopathology in CHW, Sydney. The pathologist is 

considered as the ground truth and this is the baseline for 

all of the validations in this paper. To measure the 

performance of the proposed algorithm precision, recall 

and F-measure [15] of the obtained results are computed 

by comparing them with those of the pathologist. This 

means that the results of manual quantitative and 

qualitative analysis obtained by the pathologist are used as 

the ground truth for measuring the performance of the 

develop algorithm. A recent audit of the department of  

Table 1  

Confusion matrix for performance of our system in 

classifying NTs into undifferentiated (UD), poorly-

differentiated (PD) and others. 

Actual  Our 

Classification 

 

UD PD Others 

UD 8 1 1 

PD 0 9 1 

Others 1 0 9 

Actual  Kong et al. 

Classification 

 

UD PD Others 

UD 7 2 1 

PD 0 9 1 

Others 2 0 8 

 

histopathology at CHW shows 0% historical discordance 

in classifying NTs which indicates the quality of our 

ground truth. We also compare the performance of our 

system with the state-of-the-art system proposed by Kong 

et al. [16] in making prognosis for NTs. Lastly, to validate 

the performance of our zooming algorithm and image 

enhancement algorithms, we run several experiments by 

excluding our zooming technique, image enhancement 

Neuropil 

Cellular 

Region 

Prognosis 

Engine 

Undifferentiated 

Poorly 

differentiated 

Figure 9 An overview of our prognosis decision engine. 
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technique and combination of zooming and image 

enhancement techniques from our system in the process of 

NTs classification. 

 Kong et al. [16] proposed a similar system for 

classifying NTs by analyzing the whole slide. We also 

compare the results of our system with those of the Kong 

et al. to evaluate the performance of our system against 

the state-of-the-art systems. The system proposed by 

Kong et al. has been designed for analyzing H&E stained 

histological images, and it analyzes the whole slide tissue 

using a multi-resolution approach. The image at each 

resolution level is segmented into cellular, neuropil and 

background. To segment the histological structures, the 

system uses Expectation Maximization Linear 

Discriminant Analysis (EMLDA), that uses the joint 

intensity-entropy domain of pixels in the L*a*b* color-

space images. Using this technique the constituent pixels 

of each of the histological regions are grouped into their 

associated cluster. Finally, the system grades NTs by 

combining a family of classifiers such as K-nearest 

neighbour, linear discriminate analysis, nearest mean, and 

support vector machine. 

  

6. Results 
 

To measure the performance of our proposed system in 

classifying NTs, we compare the results of our system 

with the ground truth. We also deploy the proposed 

system by Kong et al. on the test images. Table 1 reports 

the performance obtained by our system and the system 

proposed by Kong et al. in making a prognosis for NT in 

the form of confusion matrices. Table 2 indicates the  

Table 2 

Average precision, recall and F-measure obtained by our 

system and Kong et al. based on Table 2 

 Our Kong et al. 

Precision 86.66% 80.00% 

Recall 86.89% 79.86% 

F-measure 86.77% 79.92% 

 

average precision, recall and F-measure of both systems 

based on the confusion matrices in Table 1. The table 

shows that the average precision, recall and F-measure 

obtained by our system are higher than those of the Kong 

et al. system. This means that the system provides higher 

accuracy in classifying NTs into the undifferentiated, 

poorly-differentiated and others types. The inter-intra 

observer variability in pathology labs is approximately 

20% [17] for the case of NT, while the table indicates that 

the error rate of our system is approximately 13%. This 

means that our system provides reliable results for 

pathology labs. 

 Also, to indicate the effects of our proposed zooming 

and image enhancement technique in the accuracy of NT 

classification, in Figure 10 we report the performance of 

our system when the zooming and the image enhancement 

algorithms are excluded. We run three experiments to 

evaluate the performance of each of our developed 

algorithms. 

 In the first experiment, we apply our system to the test 

images without using the image enhancement algorithm. 

The figure indicates the decline in the performance of our 

system by excluding this algorithm. The main reason for 

this is that excluding our image enhancement algorithm 

increases the sensitivity of the system to low quality 

images and intensity variations. In the second experiment, 

we include image enhancement but exclude zooming 

algorithm. The figure indicates a significant decrease in 

precision, recall and F-measure of the system. This 

derives from the fact that to analyze the histology of the 

tissues, the original magnification does not provide 

enough details, and it must be analyzed under higher 

magnification. Lastly, we exclude both image 

enhancement and zooming algorithms from the system 

which provides the worse performance. The obtained 

results are lower than the results obtained by Kong et al. 

in this case. 

 
Figure 10 Effects of our developed zooming and image 

enhancement algorithms on the precision, recall and F-

measure of our system in classifying NTs. 

7. Conclusion 

 
Prognosis of Neuroblastoma tumour is highly dependent 

on the microscopic analysis by pathologists. Two most 
aggressive types of NT namely undifferentiated and 

poorly-differentiated require extensive quantitative and 

qualitative microscopic analysis. The accuracy of NT 

classification has a significant effect on determining an 

appropriate therapeutic regime, and consequently, the 

survival chance of patients. This paper proposes a novel 

hybrid algorithm to analyze the whole slide NTs under 

different magnifications and to make a prognosis decision. 

The system classifies the NTs into Undifferentiated, 

Poorly-differentiated and Others types. To analyze the 

whole slide tumour, we introduce a square partitioning 

technique which divides the images into several blocks for 

reducing the computational load. To analyze in the scale 

of tissue histology, we develop a multi-scale analysis 

technique. This technique expands the size of images and 

enables the system to automatically zoom into the images 

for investigating details of histological regions. We also 

develop a novel image enhancement algorithm to reduce 

the intensity variations within the histological images. The 

algorithm consists of two stages: global and local intensity 

variation reduction techniques. The global technique 
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reduces the intensity level of the entire image in a way 

that it does not damage the significant data. The local 

technique reduces the intensity variations between the 

constituent pixels of the same histological regions. The 

results indicate that the proposed image enhancement 

technique reduces the sensitivity of our system to noisy 

and low quality images. For extracting the histological 

regions, namely cellular regions and neuropil regions, we 

deploy a simple but yet efficient adaptive thresholding 

technique based on the Otsu method. Lastly, we propose a 

prognosis decision making engine to make a prognosis 

and to classify the NTs into undifferentiated, poorly-

differentiated and others types. The computerized rules 

for the prognosis engine are developed based on a well-

known clinical classification scheme proposed by 

Shimada et al.  

To validate the system, we compare the results obtained 

by our system in classifying NTs with those of a 

pathologist from CHW. Moreover, we compare the 

performance obtained by our system with that of the state-

of-the-art system proposed by Kong et al. The precision, 

recall and F-measures obtained by our system exceed 

those of the state-of-the-art system. The obtained 

performance promises a reliable system which increases 

the accuracy of quantitative and qualitative analysis of 

NTs and reduces the inter-intra observer variability in 

pathology labs. Moreover, the system reduces work loads 

of pathologists by assisting them with performing a time 

taken task of tumour classification.  

In future, we will extend our proposed algorithm in this 

paper to determine the specific morphological features 

which are related with diagnosis of NTs such as Mitosis 

and karyorrehxis rates.  
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