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ABSTRACT
Eye artifacts, i.e., blinks and saccades, are usually non-
avoidable when recording electroencephalogram (EEG)
data. These artifacts can affect the performance of classify-
ing the EEG patterns especially in real world applications,
e.g. brain computer interfaces. To evaluate the effective-
ness of independent component analysis (ICA) based eye
artifact removal methods, the data are analyzed in batch
and window-based modes in this paper. Despite the im-
provements achieved in the batch mode, it turns out that
applying the removal methods to overlapping windows of
the EEG data stream does not improve the classification
performance.
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1 Introduction

Eye activities, major sources of artifacts in EEG and event
related potentials (ERPs), are barely avoidable in practical
recording sessions. These activities can affect the perfor-
mance of systems that rely on single trial ERP detection,
e.g., brain computer interface (BCI) systems. Consider-
ing the characteristics of EEG signals, different methods
have been proposed or adapted so far to remove the arti-
facts while preserving the signals of interest [1, 2].

In a previous study [3], a number of artifact removal
methods were compared. The main criterion for algorithm
selection was their possibility to be used in online scenar-
ios. It was shown that a combination of infomax [4] and
ADJUST [5] was providing better performance compared
with other methods. The Infomax method was used for
decomposing the multichannel EEG data into independent
components (ICs), and ADJUST was used to identify the
artifacted ICs. The study in [3] is based on removing the
artifacts from the whole EEG dataset recorded in an odd-
ball paradigm and then classifying the target and non-target
ERPs. However, in some applications it is necessary to
process the data in an online manner. Therefore, artifact re-
moval approaches that rely on processing the whole dataset
are not applicable anymore because in an online scenario
only the previously recorded samples are available. On the
other hand, taking into account that in online scenarios the

response time of the system have to be in a limited range,
one can not use very long segments of data as the input to
artifact removal algorithms.

A common approach for online artifact removal is
using adaptive filters [1]. However, using methods like
adaptive filters and regression need separate references (i.e.
electrooculogram (EOG) channels), which are not always
available. Considering the fact that the ICA methods have
good removal performance when applied to the whole data,
they have also been used for online artifact removal. In [6]
an ICA based method for offline and online artifact removal
was proposed. The artifact channels were identified using
support vector machines. The ICA and canonical correla-
tion analysis where compared in [7] and it was shown that
the latter outperforms the former in online muscle artifact
removal. The effect of ICA based artifact removal meth-
ods on different frequency ranges of EEG were also inves-
tigated in [8].

ICA methods usually optimize cost functions, which
are defined based on statistical properties of the data. In
theory, these properties are defined when infinite number of
samples are available. Using data with short lengths would
cause the statistics to be sensitive to outliers, and hence the
ICA methods will overlearn the data. As a general rule
to avoid overlearning, it has been proposed in [9, 10, 11]
to use k×n2 samples for a successful ICA decomposition,
where, n is the number of sensors and k is empirically set to
a value between 5 to 32. It is also shown in [9, 12] that for
very short windows of data (in the extreme case the num-
ber of observations equal the number of sensors) the ICA
methods overlearn the data by estimating spikes or bumps
as independent sources. The proof for the case of fastICA
is presented in [9]. However, using simulated and real EEG
data, it is shown in [13] that the fastICA performs almost
in the same range when using data with different lengths.
The evaluation was conducted using a defined performance
index.

Considering the outcomes of previous studies, it turns
out that more comprehensive investigations about the ef-
fects of the length of the data on performance of ICA meth-
ods is necessary. The purpose of this paper is to study the
effectiveness (in terms of single trial ERP classification per-
formance) of the ICA methods for removing eye artifacts
from EEG data in an online manner. To this end, we use
the infomax (as reported in [3]) and the fastICA [14] (com-
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monly used for analyzing multi-channel biological signals)
methods.

The paper is structured as follows. In the next sec-
tion the methods for eye artifact removal are described.
Data and processing flow for ERP detection is addressed
in Section 3. Experimental results are presented in Section
4. Concluding discussions come in the final section.

2 Methods

2.1 ICA methods

Two commonly used ICA algorithms have been used in
this study, i.e., infomax and fastICA. The infomax algo-
rithm maximizes the output entropy or information flow of
a neural network with nonlinear outputs [14]. The fastICA
method maximizes the statistical independence of the es-
timated sources by maximizing the non-Gaussianity [4].
FastICA is inspired from the central limit theorem which
states that the distribution of sum of independent random
variables tends to have Gaussian distribution. The ICA
methods generate a number of ICs, however, in order to
identify the artifact ICs one has to check the ICs visually or
use automated techniques like the ADJUST method.

2.2 ADJUST

This method exploits the combination of temporal course
and spatial distribution of the independent components.
Three different classes of eye artifacts are considered in
this method, i.e., blinks, vertical and horizontal eye move-
ments. First, ICA method is applied to the EEG data. For
each artifact class, a detector is implemented by comput-
ing a class-specific set of spatial and temporal features on
all independent components. For each feature, a threshold,
which separates artifacts from non-artifacts is estimated on
the whole set of ICs by the Expectation-Maximization au-
tomatic thresholding method. If all artifact-specific spatial
and temporal features of a detector are larger than their re-
spective thresholds, the IC is classified as an artifact chan-
nel. This way, for each artifact class a sorted list of channel
indexes is returned (for more details of the method see [5]).

2.3 Online artifact removal

In an online application of single trial ERP classification,
EEG data has to be cleaned as new samples arrive to be
used for further processing. A common approach for on-
line artifact removal using ICA methods is to apply the
algorithm to some intervals of the EEG data, suspicious
to be contaminated by artifacts [8]. Alternatively, the re-
moval procedure can be used to clean all the intervals of
the data considering the fact that eye blinks and saccades
occur spontaneously all over the time. To do so, we apply
the ICA to overlapping windows of data cut from the EEG
stream.

Figure 1: Windows from the EEG stream are cut and passed
to the artifact removal method. This technique is used for
online removal of eye artifacts.

Every ∆ second, a window of data, with the length l
(l > ∆), is cut and passed to the artifact removal proce-
dure. Figure 1 shows three windows cut at times t, t + ∆
and t + 2∆. Since the windows, Dti , are overlapped, only
the last ∆ second of the cleaned data will be used by the
next modules after removing the eye artifacts. Based on the
arbitrary processing flow in the online application, these
intervals can be used individually or in combination with
previously cleaned intervals. For each window of the data,
first the mean of all channels are subtracted and after re-
moving the artifact ICs, the mean values are added to the
cleaned data.

In order to identify and deflate artifact channels, the
ICs and the ICA transformations are passed to the ADJUST
algorithm. This technique provides a sorted set of IC chan-
nel indices that are likely to be blink, horizontal or verti-
cal EOG. In a conservative approach we only used the first
channel in the union of the three sets [3].

3 Data and processing

3.1 Data

Data from eight healthy male subjects (age: 29.9 ±
3.3 years; right-handed; normal or corrected-to-normal vi-
sion), recorded in a previous study, was used (see [3] for
more details).

Experiments were performed in a shielding cabin to
reduce the effect of non-physiological artifacts. The sub-
jects were seated in a comfortable chair in front of a table.
Two input devices were placed on the table at a distance
of approximately 30 cm from each other. A monitor was
used to give commands and feedback to the subjects. If no
instructions or feedback was given a black fixation cross
was presented in the middle of the screen on a green circle
and the subjects had to put their right hand on the left in-
put device. Subjects were instructed to continuously keep
their eyes fixed on this cross and to executed slow move-
ments of the right arm between two input devices on the
table (used to label the begin and end of performed move-
ments in the EEG) on command, i.e., whenever a target
event (cross changed to a vertical line) was presented. In-
frequent task-relevant target stimuli were interleaved with
frequent task-irrelevant non-target stimuli (cross changed
to a horizontal line) in an oddball fashion (ratio of 1 : 8)
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with an inter stimulus interval of 1000 ± 100 ms. Stimuli
were shown for 100 ms. Too fast arm movements (duration
< 1 second) and commission errors (movements on non-
targets), were reported back to the subjects. A run ended
after 40 correctly performed movements. Each subject per-
formed 3 runs. The study was conducted in accordance
with the Declaration of Helsinki and approved with writ-
ten consent by the ethics committee of the University of
Bremen.

The experiments were designed and run using Presen-
tation software [Neurobehavioral Systems, Inc., Albany,
USA]. EEGs were acquired with 5 kHz and reference at
FCz (using a 128-channel actiCap system and BrainAmp
DC amplifiers [Brain Products GmbH, Munich, Germany])
and were filtered between 0.1 to 1 kHz before saving to a
PC. We used only the data from the first 64 channels (10-20
system).

3.2 Data processing

In order to use the whole existing data, we used all the
epochs and did not reject any part of the EEG recordings.
Data is processed in a flow of consecutive components as
follows:

Down-sampling / filtering
This module down-samples the data to 100 Hz and

filters the data between 0.1 Hz to 7 Hz. In order to avoid
phase shifts, forward-backward filtering technique is used.

Artifact removal
As mentioned earlier the output of the online artifact

removal method is an EEG window with the length ∆ = 1s
(regardless of the actual size of the input window, l). Con-
sidering the fact that the ERP instances are distributed in
the EEG stream randomly, the cleaned data are concate-
nated. The ERP windows will be taken from this data.

In order to investigate about the effects of the artifact
removal methods on the overall performance, they were
used in three different modes:

• No artifact removal: EEG data are passed to the next
processing component without any processing.

• Batch removal: removing the artifacts from the whole
dataset.

• Window based removal: removing the artifacts from
windows of length l, as illustrated in Fig. 1.

ERP windower
ERP instance windows were cut 0-1000 ms after the

onsets of each stimulus.

Feature generation
Feature vectors were generated from the slopes of the

lines fitted to overlapping windows cut from the retained
channels of the spatial filter (each line fitted to a 400 ms
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Figure 2: Classification performances obtained from infomax
and fastICA methods applied in batch mode. Noop represents
the case that no artifacts were removed.

segment with 120 ms overlap) and then passed to the clas-
sifier. For the features of each channel the variance was
normalized to one, after subtracting the mean.

Classification
The support vector machines (SVM) classifier (C-

SVC with linear kernel) was used to discriminate the two
ERP classes: targets vs. non-targets. We used LIBSVM
[15] implementation of the classifier. The optimum com-
plexity value for the classifier was found using grid search
[16]. ERP samples in each dataset were randomly divided
into 5 separate splits and evaluation performed by cross-
validation using the leave-one-out technique. Results of
the experiments are reported in terms of the balanced ac-
curacy (BA) of classification, which is the average of TPR
and TNR and therefore unaffected by unbalanced class dis-
tributions [17].

4 Results

The artifact removal methods are compared when applied
in the batch mode and the results are presented in Fig. 2.
The figure depicts the results obtained from infomax and
fastICA combined with ADJUST. As a ground truth, the
experiments were repeated when no artifact removal meth-
ods were used (Noop in the figure). Statistical tests (one-
tailed paired t-test) of the batch mode results confirm that
(compared with Noop) the infomax improves the classifi-
cation performance (p < 0.05), while the achieved perfor-
mance for fastICA does not significantly differ (p = 0.41).
Also the results show that infomax outperforms fastICA
(p < 0.1).

In order to investigate the effects of window length
on the artifact removal performance in the online appli-
cation, experiments with different EEG window lengths
were conducted following the procedure explained in Sec-
tion 2.3. According to the rule of requiring k × 642

samples, and for k = 5, we need at least 205 seconds
of data to be sure that the ICA algorithms do not over-
learn the data. Considering the high computational costs,
we evaluated the algorithms for windows of lengths l ∈
{1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 70, 80} seconds.
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Figure 3: Classification performances obtained from the artifact
removal methods based on the infomax and fastICA methods. The
algorithms have been used in batch and online modes, i.e., the ar-
tifacts were removed from the windows cut from the EEG stream.

In our experiments we figured out that for very short
windows (below 10s, i.e. ns < 0.25n2, where ns is the
number of samples) the algorithms can not converge and in
particular the outcome of the infomax algorithm was com-
plex number transformations. The problem can be resolved
by reducing the dimensions of the data [9]. Therefore, in
all the experiments we only kept the first r principal com-
ponents, where r is the rank of the data matrix.

Figure 3 illustrates the performance of the methods in
the online mode. Reported is the averaged balanced accu-
racies from all datasets of all subjects obtained from using
the removal methods when applied to the whole data points
in a single dataset and when applied to the EEG windows
with different lengths. The results obtainecd from the batch
application of ICA and also Noop are also reported. As
shown in Fig. 2, the infomax algorithm outperform the fas-
tICA when applied to the whole dataset. However, appli-
cation of the methods to the short windows shows different
results. The performances of both methods are below or not
significantly better than that of Noop. This effect is more
clearly visible for the infomax method, since for windows
of less than 10 seconds the performance is almost 1% and
2% less compared with the results of the Noop and batch
infomax, respectively. Although for the online version of
fastICA the performance is close to that of the batch appli-
cation of the method, this is not the case for infomax. Even
with 80s of data, i.e., ns ≈ 1.95n2 the performance is al-
most 1% below that of the batch infomax and close to the
Noop performance. That means in this case removing the
artifacts using online ICA based methods does not improve
the performance considerably in single trial ERP classifi-
cation.

The average waveforms of the targets and non-targets
of one of the datasets are illustrated in Fig. 4. The out-
puts of different artifact removal approaches plus the ERP
windows of the raw data from Fp1 and Pz electrodes are
illustrated. For the online methods the outputs of the case
that 1s windows were used are shown. As it can be seen,
the effects of the removal methods are different for differ-
ent electrodes. Batch methods have the largest impact on
the waveforms.
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Figure 4: Averaged targets and non-targets obtained from the
application of different methods to a single dataset. The solid and
dotted lines represent the targets and non-targets, respectively.

5 Conclusion

Two ICA-based eye artifact removal methods were com-
pared in batch and online scenarios. The motivation be-
hind using the latter approach is the potential to use it in
online scenarios in which the data is buffered and after re-
moving the artifacts will be used for ERP detection. The
infomax and fastICA methods were used to decompose the
EEG data into ICs and the ADJUST method was utilized
for identification of artifact ICs. The methods were eval-
uated in terms of obtained single trial ERP classification
performances.

Experiments show that infomax outperforms the fas-
tICA method in batch mode artifact removal. However,
when applying the methods to the windows from stream of
data the outcome is different. The ICA methods are sensi-
tive to the data length, in the sense that with very short data
lengths the algorithm will not converge to the optimum so-
lution unless the dimensions of the data is reduced.

In general, comparing the performances of the meth-
ods for different window sizes show that the online algo-
rithms do not improve the performance over Noop. It is
also worth to mention that considering the computational
costs of the ICA methods, using very long windows is not
practical.

When talking about removing artifacts one has to take
into account the recording paradigm and the conditions un-
der which the data were recorded. The datasets that we
used here were recorded in a controlled condition, i.e., the
correlated artifacts (eye artifacts correlated with the task)
were minimized. However, blinks and uncorrelated arti-
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facts exist in the data, which makes the recorded data a
good candidate for evaluating the artifact removal methods.
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