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ABSTRACT 

In this ongoing study we present the preliminary results of 

a fully automatic sleep stages classification based on 

acceleration and photoplethysmography signals recorded 

at wrist. The device consists in a bracelet integrating 

sensors, processing unit, communication capabilities, and 

power management. The bracelet has been worn by two 

healthy volunteers during a night period at hospital in 

combination to a complete polysomnograph. Spectral 

analysis of heartbeat intervals in standard HRV frequency 

bands, as well as movement activity level have been 

performed and used to differentiate 3 sleep states: WAKE, 

REM and NREM. The automatic classification has been 

compared to the hypnogram provided by a professional 

clinician using standard polysomnography procedure. 

Classification rates up to 90% have been achieved for 

NREM state and between 44% and 72% for REM state. 

High confusion coefficients for WAKE state is reported 

and results from hypnographic misalignment with the 

algorithm output. 
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1. Introduction 
 

Modern lifestyles are irremediably associated with 

increased incidence of sleep disorders. Only in the US 

more than 18 Million people are accounted to suffer from 

chronic sleep apnea, and 70 Million from insomnia. 

Unfortunately, the diagnosis and follow-up of sleep 

disorders requires still nowadays the use of bulky and 

cumbersome monitoring devices. There is a clear demand 

for new technologies that allow assessing vital signs 

during sleep without interfering with user comfort. 

 With respect to wakefulness, sleep is 

characterized by a higher parasympathetic activity, a 

lower body metabolism, a lower body temperature, and a 

lower responsiveness to stimuli. 

 Large individuals sleep behavior variability is 

common. Their sleep structure and organization are 

influenced by biological (e.g. age, gender, body mass 

index) and environmental factors (e.g. work schedule, 

cultural traditions, socioeconomic condition and health 

history). It is thus impossible to determine optimal sleep 

characteristics reflecting the habits of the entire 

population. Researchers are used to stratify the population 

and characterize each sub-population separately. For 

example, it is reported that the majority of healthy young 

adults sleep approximately 7.5 hours and 8.5 hours on 

weekday and weekend respectively. 

 Since more than 50 years now, sleep is classified 

in two categories: rapid eye movement (REM) and non-

rapid eye movement (NREM) sleeps. The REM sleep is 

also called paradoxical sleep and is characterized by rapid 

and random movement of the eyes and dream activity. In 

healthy young adults, REM sleep normally occupies 

between 20% and 25% of the total night sleep duration. 

NREM sleep constitutes 70% to 80% of the total night’s 

sleep period and is characterized by low body metabolism 

and increased regularity in heart rate and breathing rate. 

Remaining 5% of the total night sleep duration is 

normally scored as wakefulness [1]. 

 In a whole normal night sleep period, four to six 

REM-NREM cycles (ultradian cycles) lasting 90 to 110 

minutes each are observed. Ultradian cycles depict a 

particular structure evolving from one cycle to the other. 

The standard way to monitor sleep structure is 

polysomnography (PSG), consisting in simultaneously 

recording electroencephalogram (EEG), elecrooculogram 

(EOG), electromyogram (EMG), electrocardiogram 

(ECG), and respiration. The information provided by PSG 

allows professionals to distinguish each sleep category 

and sub-category in order to establish a sleep profile 

commonly called hypnogram.  

 Sleep scoring rules are complex and require a 

long and accurate visual inspection by specialized 

personnel. Algorithm for automatic sleep scoring have 

been studied and developed, as well as alternative devices 

for automatic sleep profile estimation based either on 

single lead EEG (as claimed by Zeo, Inc, and Neurovigil, 
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Inc), on single lead ECG [2], on breathing activity, on 

actigraphy [3], or on a combination of some of them [4]. 

In the present work, we have monitored sleep with a 

bracelet-like device integrating acceleration and optical 

sensors to acquire signals related to body movements and 

cardiac activity, respectively [5-6]. These signals have 

been automatically processed to obtain a sleep profile, 

consisting in REM, NREM, and WAKE stages. The 

following sections described the methodology, 

preliminary results and observations related to this 

ongoing study. 

 

2. Methodology 
 

2.1 Recording protocol 

 

The first phase of our study was conducted during 2013 in 

collaboration with the University Hospital of Lausanne 

(Switzerland). So far, two young healthy females 

participated to the study. 

 After the installation of the ambulatory recording 

setup, the subjects were asked to enter home for a full 

night and come back to hospital the successive day. PSG 

was started between 22:00 to 23:00 and was terminated by 

spontaneous awakening between 06:00 and 08:00. The 

recording setup consisted in a PSG system and the 

bracelet (placed at the left wrist). PSG was done using 

Embla titanium recording system and signal analyzed 

with Somnologica software (both Natus Medical, Inc, 

products) to obtain the hypnogram. The bracelet 

integrates three-axial accelerometer, optical sensors, 

processing unit, communication capabilities, and power 

management [7]. The optical sensor includes one infrared 

LED (940 nm) and three photodiodes in contact with skin 

and providing three photoplethysmography (PPG) signals 

acquired at 21.33 Hz. The total weight of the portable 

sensor (Figure 1) of about 25 g and its reduced size 

(34x40x12 mm
3
) make it a comfortable device for 

minimally obtrusive ambulatory sleep studies [5-6]. The 

sensor is equipped with an LCD showing cardiovascular 

indicators in real time, and depicts 50 hours of data 

logging autonomy. 

 Data recorded during the entire night without 

interfering with subjects was further downloaded into a 

PC platform for off-line processing. 

 

2.2 Features extraction 

 

From the two records, two families of features have been 

extracted to classify sleep stages (WAKE, REM, NREM) 

and design sleep profiles (hypnogram): 1) acceleration- 

and 2) PPG-based features (see Figure 2). 

 The acceleration-based feature #1 is used to 

determine “sleep” (REM and NREM) and “wake” 

(WAKE) classes. It is performed by estimating the energy 

and comparing its low-pass filtered version to a threshold. 

Magnitudes below the threshold are classified as “sleep” 

(REM, NREM), in the opposite case as “wake”. The 

acceleration-based feature #2 consists in an estimation of 

the night movement level which is extracted by low-pass 

filtering (cut-off frequency at 0.1 Hz) the energy (square 

of the norm-2) of the first derivatives of each axis. Feature 

#2 is used to classify sleep stages (REM, NREM and 

WAKE).  

Features based on PPG signals are derived from heartbeat 

interval time series. PPG signals are processed as 

described in [5] to obtain pulse-to-pulse intervals. Outliers 

are then rejected from the pulse-to-pulse intervals series 

by applying lower (300 ms) and upper thresholds 

(2000 ms) reflecting normal physiological conditions of a 

healthy human. Pulse-to-pulse time series are then 

resampled at 2 Hz, band-pass filtered (0.02-0.5 Hz), and 

analyzed in the frequency domain as performed in Heart 

Rate Variability (HRV). Various methods exist to 

estimate the power spectral density of a signal. In this 

study we used the Yule-Walker algorithm to estimate 

parametric spectral densities by fitting autoregressive 

(AR) prediction models of a given order to pulse-to-pulse 

time series. An AR model of order 20 was fitted on 50-

seconds segments at each sample to evaluate the power in 

the very low frequency (VLF<0.04 Hz), low frequencies 

(LF in [0.04, 0.15] Hz, and high frequency (HF>0.15 Hz) 

ranges [6]. 

 

 
Figure 1 - CSEM's proprietary wrist device for fully 

automatic sleep stage classification. 

 

2.3 Sleep profile 

 

Classification of sleep stages (REM, NREM and WAKE) 

based on HRV and acceleration signals has been 

performed using a decision tree [8]. Nodes, branches, and 

leafs of our decision tree are defined as follow: 

 WAKE class is accessible when “wake” is 

detected by the sleep/wake classification module; 

 REM class is reached when 1) “sleep” is 

detected, 2) night movement level is extremely 

poor, and 3) spectral analysis indicates high 

parasympathetic activity; 
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 NREM class is entered when 1) “sleep” is 

detected by the sleep/wake classification module, 

2) night movement level is poor, and 3) spectral 

analysis indicates high sympathetic activity. 

The sleep profile is then obtained by using the outcome of 

the sleep stage classification module and consists in an 

estimated hypnogram with REM/NREM/WAKE 

durations. 

 

 
Figure 2 - Block scheme of the algorithm for automatic sleep 

profile estimation. 

 

3. Results 
 

Figure 3 shows a comparison between the PSG-based and 

proposed approach hypnograms. As can be seen, subject 1 

displays more false positives, especially for the WAKE 

state, compared to subject 2. The false positives for the 

WAKE state can be explained by an increased SNR in the 

PPG signal due to muscle activities and possibly lower 

skin blood perfusion in the arm that is mistaken for body 

movement. 

As shown in Tables 1 and 2, the proposed classification 

algorithm performs rather well for classifying REM and 

NREM as displayed by the diagonal elements of the 

confusion matrices. The WAKE state is poorly 

discriminated with classification rates of 37% and 20%. 

This is due to the misalignment of the hypnogram and the 

output of the algorithm. Indeed, while rules have been 

elaborated for the determination of the sleep stages (REM, 

NREM and WAKE), the subjective assessment from the 

sleep clinician result in these misalignments. Confusion 

between WAKE and the other sleep states can result as 

shown in Tables 1 and 2. 

 

 

 
Figure 3 - Comparison of PSG-based (grey area) and wrist-

worn device-based (black line) hynograms for: (a) subject #1 

and (b) subject #2. 

Table 1 – Confusion matrix for subject #1 [%] 

  
PSG 

  
REM NREM WAKE 

P
P

G
 REM 44 52 4 

NREM 12 82 6 
WAKE 16 47 37 

 

Table 2 – Confusion matrix for subject #2 [%] 

 

  
PSG 

  
REM NREM WAKE 

P
P

G
 REM 72 20 8 

NREM 7 91 2 
WAKE 12 68 20 

 

4. Conclusion 
 

This paper presented encouraging preliminary results for 

the determination of the 3 fundamental and standard sleep 

states of REM, NREM and WAKE solely from the 

measurement of body movement and heart pulse rate 

using PPG from the wrist. The wrist-worn sensor and 

processing device makes our approach very attractive for 

applications related to screening and compliance to 

treatment of sleep disorders, mental stress and depressive 

states. Improvement of classification rates will be 

achieved by using a larger database and strategies for 

improving SNR in the PPG signal. 
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