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ABSTRACT 

Electroencephalogram (EEG) recordings are contaminated 

by different internal and external noises and interferences. 

Therefore, they should be manipulated in order to restore 

them from these artifacts that could be eye blinks, 

electrocardiogram (ECG) and many others. Recent research 

is mainly oriented toward implementing methods in order to 

remove ocular artifacts whose frequency band overlap with 

the EEG frequency of interest. Independent Component 

Analysis (ICA) has already shown to be an effective way for 

removing the activity of these artifacts. However, when 

implementing an ICA-based method, the key relies on how 

to identify the ocular artifact components. Based on the 

components characteristics, different features such as 

correlation coefficients, distribution ratio, and maximum 

value have been identified in order to recognize in an 

automatic way the artifactual components and their 

subtraction from the original space to get ocular artifacts free 

EEG signals. Artifactual components were identified using 

an adaptive thresholding by means of K-means clustering. 

Qualitative and quantitative techniques of evaluation are 

presented and give promising results. The classification 

accuracy based on the correlation feature reached 99.54%.  
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1. INTRODUCTION 

Electroencephalogram (EEG) is a measurement of electrical 
currents that flow during synaptic excitations of the dendrites 
of many pyramidal neurons in the cerebral cortex [1].  
Therefore, EEG is used for recording electrical activity of the 
brain via electrodes placed across the scalp. However, this 
electrical signal is always contaminated bythe internal and 
external noises and should be processed for further analysis 
and feature extraction. Ocular artifacts, especially eye blinks, 
are one of the main interferences in EEG and consist of low 
frequency high amplitude signals with a frequency range 
maximal below 4Hz and show propagation over the most 
anterior head regions [2].This type of artifacts cannot be 
filtered by traditional FIR filters such as high pass filters 
since they generally overlap with the EEG of interest or rely 
in the same EEG frequency band. Actually, some other 

 
 

artifacts can be minimized by training the subject to relax and 
to avoid facial expression during the experimentation; 
however it seems impossible for almost all people to control 
involuntary eye blinking. There are two main approaches 
used in order to deal with this type of artifacts; the first 
consists of a manual rejection of the epochs on the EEG 
channels that represent an ocular artifact. This is usually done 
by a field expert but it is not accurate and usually 
accompanied by a loss of data. The second consists of 
conventional Electro-oculogram (EOG) correction methods 
such as linear filtering, regression methods, Principal 
Component Analysis (PCA) and Independent Component 
Analysis (ICA) [3]. Many researchers have shown that ICA is 
very effective in eliminating the activity of a wide variety of 
artifactual sources from EEG recordings with results 
comparing favorable to those obtained with other methods 
[2]. However, when implementing an ICA-based method, the 
key relies on how to identify the artifactual components. 
Many researchers have reported their achievements in this 
field. Some of them added the acquisition of an EOG 
additional channel and adopted the relations between the 
EOG and the independent components (ICs) [4]. Others 
identified ocular artifacts ICs in a manual way by interpreting 
scalp topographies as well as frequency distribution 
characteristics in terms of visual inspection [5].This paper 
discusses the implementation of an automatic ocular artifacts 
rejection method based on ICA without the use of an 
additional channel such as an EOG channel. Therefore, 
ocular artifact components will be classified according to 
different features based on the proper characteristics of these 
ICs. Assuming that ocular artifact components are highly 
correlated with the prefrontal electrodes relies on the fact that 
these latter electrodes are the most contributed with EOG 
noise [1]. Furthermore, normal EEG activity is tightly 
distributed about its mean and ocular artifacts are ten times 
larger in amplitude than normal neurological signals. Based 
on these assumptions, three features were adopted for 
classification; the first one consists of calculating the average 
of the correlation of each IC with prefrontal electrodes, the 
second consists of calculating the maximum value of each IC 
and the third is the ratio between the peak amplitude and the 
variance of each IC. Based on these features, the ICs will be 
classified using adaptive thresholding by Kmeans clustering. 
Therefore, this study aims to develop an automatic Kmeans-
ICA based method in order to remove ocular artifacts from 
multi-channel EEG recordings.  
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2. MATERIAL AND METHODS 

2.1  Signal Acquisition  

The signals database consists of an international database 
“PhysioNet.org” which includes a large amount of datasets 
regarding different physiological effects. “EEG Motor 
Movement/Imagery” signals were adopted. This dataset was 
recorded using the BCI2000 instrumentation system over 109 
subjects. Each subject performed 14 different trials while 64 
EEG channels were recorded and sampled at 160Hz [6].  

2.2  Temporal Filtering  

All EEG channels were band pass filtered between 1 and 30 
Hz since this broad frequency band contains all frequency 
components necessary for a motor imagery classification. 
This was done by first implementing a high pass 
finiteimpulse response filter (FIR) with cutoff frequency 
equal to 1Hz; the main goal of this filter is to remove the 
disturbing very low frequency components such as those 
related to movement or breathing. Then a low pass FIR filter 
with cutoff frequency of 30Hz was implemented in order to 
remove high frequency artifacts such as power lines 
interferences.  

2.3  Independent Component Analysis 

Independent Component Analysis aims to separate a 
multivariate signal into additive components or activations in 
a way that these components are statistically independent and 
they are non-Gaussian. Almost all ICA algorithms start by a 
preprocessing phase that consists of whitening the data to 
remove any existing correlation. Actually, EEG signals 
consist of a linear mixture of real brain activity with different 
noise components, therefore when we whiten these linear 
mixtures, the variance on both axes is now equal and the 
correlation of the projection of the data on all axes is equal to 
zero. After whitening the data, the ICA algorithm consists of 
rotating the resulting axis of the matrix in order to minimize 
the Gaussianity of the projection on all axes. Therefore the 
full transformation from the original space is known as the 
weight matrix [7]. 

                                  S= W*X                                    (1) 
where the matrix X is the data in the original space, W is the 
weight matrix and S represents the sources activity.           
The main objective of the ICA algorithm is to find the weight 
matrix W that decomposes the multi-channel EEG signal into 
independent components assuming temporal and spatial 
independency. In this case, X is a matrix containing the EEG 
signals recorded at different electrode sites on the brain 
where each row of this matrix is one time waveform EEG 
signal. In this work, an Extended-Infomax ICA was 
implemented because of its ability to separate sub and sup 
Gaussian signals simultaneously [7]. Some of these ICs 
represent ocular artifacts and should be omitted from the 
signal reconstructed part. However the key relies on how to 
identify these artifactual components.  

2.4  Automatic Artifact Identification  

Based on different features, artifactual components are 
identified, and then classified into two groups using an 
adaptive thresholding (as described in section E): 

 Average correlation: ocular artifact components are 
highly correlated with prefrontal electrodes since 
those are the electrodesmostly affected by EOG 
noise.Therefore, this first feature consists of 
calculating the average of correlation between each 
independent component and two prefrontal 
electrodes (FP1 and FP2). The correlation values 
expected should be greater for the ICs containing 
eye blinking artifacts. Cross correlation, Rxy,is 
widely used in order to estimate the degree of 
similarity of two time series [1]. The range of the 
correlation data is -1 to 1; therefore, more the 
signals are similar, the closer the correlation value is 
to 1. Rxyis the cross correlation of tow time series x 
(n) and y (n) as cited in equation 2. 

                                          
    (2)  

Where, m denotes the number of samples by which 
y[n]is delayed. Then the average correlation feature 
vector was created by computing the correlation of 
each independent component with the prefrontal 
electrodes (FP1 and FP2) as shown in equation 3. 

                                                 2    (3) 

 Distribution ratio: this feature is based on the fact 
that normal EEG activity is tightly distributed about 
its mean [1]. Therefore a second classifying feature 
vector was adopted and is equal to the ratio between 
the peak amplitude and the variance of each IC as 
depicted in equation 4. 

          
          

         
                      (4) 

For i= 1, 2… N. Where max(IC (i)) is the maximum 
value or amplitude of the i

th
 independent component 

and         ) is its variance. Normal EEG 
components should give low values regarding this 
feature relatively to artifactual components.  

 Maximum value: as its name implies, this 
feature vector consists on simply calculating the 
maximum value of each independent component 
based on the fact that ocular artifacts are greater in 
amplitude than normal neurological signals.      

2.5  Adaptive Thresholding: Kmeans Clustering  

In order to classify the ICs into ocular or non-ocular artifacts, 
we have to determine a threshold for all feature vectors. This 
was done by applying Kmeans algorithm that starts by 
partitioning the set of ICs into two groups using a random 
threshold. Then, it calculates the centroids of each group and 
assigns each component to the group that has the closest 
centroids based on the squared Euclidian distance. Once all 
the components are assigned, it recalculates each centroid 
and iterates until both centroids remain the same. Actually, it 
is an iterative partitioning in a way that the considered 
threshold will minimize the intra class variance and thus 
maximize the inter class variance [8]. The mathematical 
principle is explained below:  

Considering a set of n independent components  

IC’s {IC (1), IC (2), IC (3)…….IC (n)};  

234



  

The algorithm starts by partitioning this set into two groups 
and then computes the local means of each group as shown in 
equation 5: 

  
 

  
       

  
          (5) 

Therefore the new grouping will be defined as:  

| IC1 (k) – C1 | < | IC1 (k) – C2 |     for k=1…………n1; 

| IC2 (k) – C2 | < | IC2 (k) – C1 |     for k=1…………n2; 

Where C1 and C2 are the local means of each class, n is the 
total number of independent components.   

 

2.6  Evaluation of the Proposed Method  

In order to evaluate and validate the effectiveness of the 
proposed method, three aspects have beenconsidered: 

 Performance of the ICs identification classification 
system: ROC analysishas been done for all the 
features [9]. Actually, manual classification was 
performedby a trainedexpert investigatoron 10 
signals (640 samples as discussed in section III).  
The manual classification is based on the IC time 
course, power spectrum and scalp topography. 
These results were compared to those obtained by 
the proposed method in order to calculate the 
accuracy of the classification system.   

 Performance of the denoising method in terms of 
EEG neural data conservation:Two features have 
been computed on segments of the signals that were 
originally artifact free. Actually, these segments 
should remain intact after EOG denoising. 
Correlation coefficients were calculated between the 
processed portions and the artifact free 
corresponding signals.  For optimal performance, 
the correlation coefficient should be close to 1 [10]. 
Furthermore, coefficient of waveform similarity was 
calculated in order to evaluate the performance of 
the reconstruction of the signal [11]. 

    
 

 
                          

       
    (6) 

Where xseg is a clean original EEG epoch, x’seg is the                 
corresponding corrected EEG epoch and M is the 
considered number of electrodes. 

 Performance of the artifact removal: it is difficult to 
evaluate quantitatively this criterion since the 
considered dataset consists of recorded data and 
therefore the exact time series of the EOG noise 
interfering with the clean neurological EEG signal is 
unknown. However, the processed and the original 
signals should be highly correlated at all frequencies 
except the band containing the artifact [11]. This is 
verified by computing the coherence of the signals 
as depicted in equation 7 where x and y are the 
Fourier coefficients of the two signals and w1 and 
w2 are the bounds of frequency. The coherence 
values expected should be the lowest under 4Hz 
which is the EOG bandwidth.  

                           
                   

  

      
           

     
                       (7) 

Furthermore, an additional feature, the percentage of 
signal reconstruction is calculated for all electrodes 
[12]. This percentage should be low for the 
electrodes mostly contaminated by the eye blinking 
noise such as the frontal electrodes. 

                                                                (8) 

  
          

     
(9) 

Where x (n) is the original EEG signal and xR (n) is 
the reconstructed EEG signal. 

3. RESULTS AND DISCUSSION 

All mentioned methods were implemented on the EEG 
dataset  from the international database on Matlab© as well 
as in EEGLab toolbox distributed under the free GNU GPL 
license for processing data in Electroencephalography [13]. 

3.1  Manual Ocular Artifact Identification 

ICA decomposition of the 64 input channels was performed 
using the extended Infomax algorithm which gives stable 
decomposition up to 100 channels [14]. Once the 
decomposition is done, the 2D scalp map of each component 
was plotted, the power spectrum as well as the ICs time 
series. A trained investigator classified the ICs and by means 
of visual inspection, components 1, 3, and 6 for example, in 
the considered dataset were assigned as ocular artifacts since 
there scalp maps show a far frontal projection typical of an 
eye artifact; furthermore, they occupy a low frequency range 
but are generally strongest under 4 Hz what was verified 
when plotting their power spectrum.   

 

 

 

 

 

 

 

 

 

 

 

3.2  Automatic Oocular Artifact Identification  

 Average correlation: experimental results show that 
components 1, 3 and 6 in the considered dataset have 
the highest values regarding this feature. Fig. 2 
shows the results of classification after applying 
Kmeans clustering on two classes; components 1, 3 
and 6 were grouped in the first class which is the 
artifactual class. 

 

 
Figure 2 Example of an ocular artifact IC. (a) Scalp map; (b) 

Power spectrum; (c) signal time series. 

 

 

 
Figure 1 Example of an ocular artifact IC. (a) Scalp map; 

(b) Power spectrum; (c) signal time series. 
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 Distribution ratio: this feature vector shows that 
components 1, 3 and 6 have high values and are close 
to the artifact cluster centroid (10.41) however some 
non-ocular artifact ICs also show high values 
regarding this feature such as component 9 that 
shows a distribution ratio of 10.11.   

 Maximum value: ocular artifacts are greater in 
amplitude than neurological signals. Experimental 
results show that components 1, 3 and 6 have the 
highest values regarding this feature. Kmeans 
clustering was performed on 3 classes. All 
components of class 1 are considered as artifactual. 

3.3  Evaluation of the Proposed Method   

 ROC Analysis: Accuracy, specificity and sensitivity 
were calculated for all feature vectors considering 
640 samples. As each sample contains 10’000 data 
points, the analysis was conducted over 6’400’000 
data points. Table 1 shows the results of the ROC 
analysis. Ocular artifacts were classified using the 
three features; the correlation feature gives the 
highest accuracy (percentage of correct predictions) 
of 99.54%. Distribution ratio gives the lowest 
accuracy (81.87%). However, some non-
physiological artifacts such as extreme values and 
baseline drifts introduced during the acquisition of 
the EEG signals should be considered as it would 
affect the accuracy as well as the performance of the 
system. The results show that the classification is 
accurate, and therefore the considered, simple and 
easy to implement features could be used for the 
automation of an ICA-based denoising method.   

Table 1 Results of the ROC analysis 

Feature 
ROC Analysis 

Accuracy Specificity Sensitivity  

Average 

correlation  

99.54% 99.51% 100% 

Distributio

n ratio 
81.87% 97.68% 14.7% 

Maximum 
Value  

98.75% 98.72% 100% 

 

 Conservation of the EEG neurophysiological signals: 
The first feature which is the cross correlation 
between the free artifact segments before and after 
denoising have been computed over 64 
electrodes.The average obtained value was 0.96. Fig. 
3 shows a 2D mapping of the correlation all over the 

scalp illustrating high correlation at all electrodes 
except on the pre-frontal electrodes highly affected 
by the EOG noise. Furthermore, as a second 
objective criterion for measuring the conservation of 
the EEG neural signals, a coefficient of waveform 
similarity was calculated. The average computed 
over 64 sets was 0.037 showing that the clean 
signals, before and after denoising have 99.62% of 
similarity. The results demonstrate the conservation 
of the EEG intact signals due to the high values of 
similarity.  

 

 

 

 

 

 

 

 Ocular artifact removal: In order to evaluate the 
removal of the eye blinking artifact, coherence 
between the signals before and after denoising was 
plotted. Fig. 4 shows that the minimal coherence 
value is found in the bandwidth containing the 
artifact which is below 4 Hz.  

 

 

 

 

 

 

 

 

 

 
Moreover, the percentage of signal reconstruction 
(PSR) was calculated over the 64 electrodes. Fig. 5 
shows a 2D mapping of the PSR. Actually the 
percentage of the signal reconstruction is high on all 
electrodes between 80 to100 percent except on the 
prefrontal and the frontal electrodes, the most 
affected with eye blinking. 

 

 

 

 

 

 

 

 
Figure 5 Mapping of the percentage of signal 

reconstruction evaluation criterion. 

 

 

 
Figure 3 2D mapping of the correlation between 

the artifact free EEG signals before and after 

denoising. 

 
 

 

 
Figure 3 Coherence between the original and the 

processed signal showing a minimal value is the artifactual 

bandwidth. 

 

 

 
 

Figure 4 Coherence between the original and the 

processed signal showing a minimal value is the 

artifactual bandwidth. 

 

 

 
Figure 2 Kmeans clustering based on the correlationfeature. 
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Furthermore, as a qualitative criterion for the 
evaluation of artifact removal, Fig. 6(a) shows an 
artifactual portion of the EEG signal containing an 
eye blinking artifact almost at time point 1600. Fig. 
6(b) shows the corrected EEG signal with ocular 
artifact removal. While comparing Fig. 6(a) and Fig. 
6(b), it is clear that the ocular artifact is perfectly 
removed and proves that Kmeans-ICA is effective 
and powerful in real contaminated EEG data 
providing a novel idea for preprocessing in EEG. 

 

 

 

 

 

 

 

 

 

 

On another hand, based on the EEG signal shown in fig. 1, 
the ocular artifact occurs on time point 6500; Fig. 7 shows 
the 2D scalp maps within the range of time points 6470 till 
6550 with an increment of 10 time points of the signal before 
denoising. It shows the appearance of the eye blink (around 
time point 6500) mainly on the frontal lobe, how it is 
propagated through time from 6500-6540 as well as how it 
disappeared at the end of the eye blink as shown at time 
6550.  

 

 

 

 

 

 

 

 

 

 

Fig. 8 shows the 2D scalp maps of the same data range with 
same increments after Kmeans-ICA denoising. While 
comparing Fig. 7 and Fig.8, it is clear that the far frontal 
activity, typical of an eye blinking artifact has been removed.  

 

 

 

 

 
Figure 8 2D scalp maps after denoising. 

4. CONCLUSION 

The main contribution of this paper is the development of an 
adaptive, automatic ocular artifact removal method without 
the use of an additional reference such as an EOG channel. It 
is mainly based on Independent component analysis to which 
different traditional, easy to compute classifying features 
were added in order to automate the process. Classification is 
done using an adaptive thresholding by means of Kmeans 
clustering showing prominent and high accuracy. The results 
show that the proposed method is effective in terms of ocular 
artifacts classification, their removal as well as conservation 
of useful EEG neurological signals.  
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