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ABSTRACT 
This work deals with recognizing surface by processing 

local information from their corresponding tactile images 

and fusing them to obtain the global pattern of surface 

irregularities. Tactile images are acquired while exploring 

surfaces with four kinds of texture patterns. Texture 

information is obtained from each of the images by edge 

detection of the region where higher amount of pressure is 

felt. These edge detected images are fused to obtain the 

pattern of surface irregularities. The fused images are 

classified using hierarchical multi-class Support Vector 

Machine which yields an accuracy of 83.334% in 0.083 

seconds. It is observed that the classification accuracy is 

enhanced by image fusion than that obtained by 

concatenating features of each component image which 

formed the fused images in the former case. When noise 

is gradually added to the features, the classifier shows an 

accuracy of 75% even when SNR is 8dBW, indicating the 

robustness of the classifier. Also, the performance of the 

algorithm is tested by adding white Gaussian noise to the 

raw images. Finally, McNemar Test validates the results. 

Thus, the algorithm can be integrated into a tactile-

sensing system in real-time scenario for identifying 

surfaces based on texture. 
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1. Introduction 
 

Design and development of artificial hands is a well-

researched area in fields of rehabilitation, robotic surgery, 

tele-navigation and several other Human Computer 

Interaction (HCI) areas. However, the functionality of the 

artificial hands is incomplete without haptic perception. It 

is the sense of touch that allows us to distinguish objects 

around based on their properties like shape, size, 

deformability, etc. This study deals with the surface 

irregularities or textures which are important parameters 

for controlling friction and interfacing implants. While 

exploring a surface, human brain sequentially processes 

the spatial distribution of the irregularities in the form of 

images (i.e. pictorial processing) to perceive the surface, 

and thereby recognize the object [1-3]. With this insight, a 

pre-processing stage is presented for classification of 

surfaces based on textures where edges of the region 

sensed at different instants during exploration are fused to 

reconstruct the 2-D texture pattern. Here, lies the novelty 

of our research. 

 Several research has shown object recognition based 

on its properties like shape [4], size [5], etc. Also 

classification of surfaces from properties like 

deformability [6], texture [7], etc. can be found in 

literature. Based on Kalman filtering, 3-D object shapes 

have been reconstructed from tactile information and 

thereby recognized [8]. Although fine texture based 

classification has previously been done to distinguish 

different types of clothes, papers [9] and tailor-made 

surfaces [10], yet classification of house-hold items based 

on the pattern of surface irregularity has not been 

previously done as to the best of author’s knowledge. 

 In this work, the information obtained from tactile 

images at different instants is combined to recognize four 

kinds of surface patterns. Some are tailor-made surfaces 

with 1mm embossed uniformly distributed patterns while 

the others are house-hold items. Images have been 

acquired over the duration of exploration. Each image is 

converted to grayscale image and from each of them the 

region of interest is obtained by histogram based 

thresholding. The edge of the region of interest is obtained 

using Sobel mask. All the images belonging to a single 

exploration are fused to obtain a single image representing 

that exploration which reveals the 2-D texture of the 

surface. The gradient information of this image forms the 

feature-space. Hierarchical multi-class Support Vector 

Machine is used to classify the features of the four surface 

classes. Results are compared with other standard 

classifiers. Also, a comparison of the result without the 

fusion step is shown. These results validate our hypothesis 

that forming an image by combining information from all 

the frames during exploration of the surface reveals the 

spatial distribution of its texture, thereby providing higher 

classification accuracy. The algorithm is also tested in 

presence of noise to claim its robustness. 

 Section 2 describes the entire course of the work. 

Results are discussed in Section 3. Finally, section 4 

concludes the paper while mentioning future scope of 

research in this direction. 
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2. Methods 
 
The process of experimental approach undertaken to 
acquire tactile images, extract features and classify 
surfaces based on the extracted features, are explained 
here. 
 

2.1 Image Acquisition 

 

Data has been acquired from 15 healthy subjects (8 

female and 7 male) in the age group of 25±3 years who 

are given one of the surfaces shown in Fig. 1 and are 

asked to dynamically explore them with a fingertip, for 10 

seconds after which the given surface is replaced by 

another surface. The surfaces are provided to the subjects 

in the orientation shown in Fig. 1. This is repeated 10 

times for all the surfaces. The surface and the tactile 

sensor are fixed together using a micro-pore so that their 

relative orientation does not vary during exploration. By 

fixing the initial orientation of the surface and the relative 

frames of the surface and the sensor, the need for image 

registration is eliminated in this work. Thus, a data-set 

consisting of 15 (subjects) × 10 (number of times each 

surface is explored) × 12 (number of surfaces) = 1800 

observations is obtained. A segment of the Tekscan grip 

sensor [11] is used as the tactile sensor and its sampling 

rate is fixed to 10 images per second. 
 

 
Figure 1. Different surfaces having different textures: 1-

dots (embossed pattern, lid of plastic box, hair brush), 2- 

dash (embossed pattern, switches of a remote control, 

strip of capsules), 3-horizontal lines (embossed pattern, 

comb, guitar strings) and 4-grid (embossed pattern, 

biscuit, badminton racket). 

 

2.2 Pre-Processing and Feature Extraction 

 
For each observation, there are 10 (sampling rate) × 10 
(duration of exploration) = 100 raw component images. 

These images are processed to obtain relevant features for 
classification. The pre-processing and feature extraction 
consist of the following seven steps.  

 At first, the RGB images are converted to 

grayscale images or intensity (I) images [12] 

using (1).  

 

  0.2989 0.5870 0.1140I R G B       (1) 

 

 Next, from each of these, an intensity histogram 

is constructed as shown in Fig. 2(i). Last bin of 

these histograms does not include the intensities 

of foreground as most of the background is white 

(intensity close to 255). From the intensity 

variation of all the images, it is noted that a 

threshold of the 240 can be chosen for converting 

the grayscale image to binary image. Thus, the 

output of the second stage consists of binary 

images revealing the region of interest.  

 As the applied pressure is more where 

irregularity is more, we erode the region of 

interest slightly to obtain a more specific region 

of interest. For this morphological operation, a 

square structural element with dimension of 10 

pixels is selected [12].  

 These eroded images are sent from the third 

stage to fourth stage for edge detection using the 

Sobel mask [12]. Sobel mask is chosen for its 

superior performance than other edge detection 

masks as it places emphasis on the pixels closer 

to the centre of the mask. The Sobel mask is 

shown in Fig. 2(ii). The edge detection provides 

an outline of the surface irregularities as is 

perceived by the subject during exploration.  

 At the fifth step, all the 100 component images 

corresponding to a single observation are fused 

by performing logical OR on the binary edge 

detected images.  

 Following this, the gradient information is 

obtained which consists of the gradient 

magnitude (M) and the gradient direction () 

matrices where each matrix has the dimension of 

the image. These matrices are then converted to 

arrays in row-major format for extracting the 

statistical features.  

 Finally, at the seventh step, six statistical features 

are extracted from each of the gradient 

magnitude and direction arrays. These six 

features are mean, standard deviation, skewness, 

kurtosis, 95 percentiles and mean absolute 

deviation. This yields a 12-dimensional feature 

vector (6 statistical features from the magnitude 

array and 6 statistical features from the direction 

array).  
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Figure 2. Pre-processing stages: (i) Histogram of an grayscale image with the threshold marked by bold black line; (ii) Sobel 

mask; (iii) Steps 1 to 5: (a) RGB image; (b) Grayscale Image; (c) Binary Image; (d) Eroded Image; (e) Edge of the region of 

interest; (f) Combined Image from information of all 100 frames of an observation. 

 

Now, if the fifth step, where edge detected images are 

fused, is excluded and instead, the statistical features of 

the 100 component images are concatenated, we would 

have obtained a comparatively large 1200-dimensional 

feature space. The first five steps of image processing is 

briefly outlined in Fig. 2(iii). 

 

2.3 Classifier: Hierarchical Multi-Class Support 

Vector Machine 

 

The standard Support Vector Machine (SVM) is a binary 

classifier. In this work, the following strategy has been 

adopted to convert it into a multi-class classifier. This is 

called as the hierarchical multi-class SVM (HM-SVM) 

[13]. The dataset is recursively partitioned into non-

overlapping subsets having maximum margin. For this, 

the mean feature vectors of each class are taken, and are 

clustered into two-sets using k-means algorithm [14]. The 

corresponding sets become the two-classes for the current 

SVM classifier. The clustering followed by classification 

of the resulting sets are continued until there is data from 

a single class. Each class forms a leaf node of the SVM 

hierarchy (binary tree). 

 As an example Fig. 3 shows the training procedure 

for a dataset having 5 classes. The mean feature vectors of 

five classes {1, 2, 3, 4, 5} are clustered into two sets i.e. 

{1, 2, 5} and {3, 4} at level-1. Thus, the dataset 

corresponding to classes 1, 2 and 5 forms one of the two 

classes for the SVM classifier at the top level and other 

class is formed from the data of class 3 and 4. Proceeding 

in a similar manner, the SVM classifiers at level-2 

separates {1, 2, 5} into {1, 5} and {2}. On the other hand, 

{3, 4} is divided into {3} and {4}. Finally, {1, 5} gets 

divided into {1} and {5} at level-3. 

 During testing, the classification occurs in a top-to-

bottom manner. At each SVM node, the predicted class 

decides whether to pass the unknown sample to the left or 

the right branch and finally, the classification stops at the 

leaf node deciding the class of the unknown sample. 

 

 

3. Results and Discussions  

 

For testing the proposed method, the dataset is 5-fold 

cross-validated. 60% of the dataset is used for training the 

classifiers, 20% for validating the chosen parameters and 

the remaining dataset for testing the trained classifier. 

 The result of multi-class classification for the four 

surfaces is mentioned in Table 1. For each of the surfaces, 

accuracy, Type-I error and Type-II error [15] is noted. 
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Accuracy is how many samples of a particular class are 

correctly identified by a trained classifier. With respect to 

a given class, Type-I error indicates how many samples of 

the other classes are identified as the given class and 

Type-II error indicates how many samples of the given 

class are classified as a different class. Along with this, 

the time taken to classify an unknown sample is also 

noted. 

 

 
(a) 

SVM-1

SVM-2 SVM-3

SVM-4

{1, 2, 3, 4, 5}

{1, 2, 5} {3, 4}

{2} {3} {4}
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{1, 5}

Level - 1

Level - 2

Level - 3

 
(b) 

Figure 3. Training of HM-SVM: (a) Successive clustering 

of the feature space, (b) SVM tree. 

 

Table 1 

Multi-class Classification Results using HM-SVM 

Class Accuracy 

(%) 

Type-I 

error (%) 

Type-II 

error (%) 

1 70.001 22.332 29.999 

2 93.334 5.000 6.666 

3 96.667 10.500 3.333 

4 73.334 19.833 26.666 

Mean 83.334 14.416 16.666 

Time (s) 0.083 

 

 The performance of the dataset constructed using 

proposed method (Dataset-1) is compared with other 

standard classifiers viz. Linear Discriminant Analysis 

(LDA) [16] and k-Nearest Neighbor (kNN with 3 

neighbors, city-block distance and inverse distance 

weighting) [16] as shown in Table 2. Also, the 

classification results are compared by constructing the 

dataset concatenating the statistical features of the 100 

component images i.e. without the fusion of images. This 

dataset is referred as Dataset-2 in Table 2. 

 

Table 2 

Comparison of Classification Results 

Dataset Performance 

Metrics (Mean) 

HM-

SVM 

LDA kNN 

Dataset-

1 

Accuracy (%) 83.334 76.667 73.336 

Type-I error (%) 14.416 25.835 18.887 

Type-II error (%) 16.666 23.333 26.664 

Time (s) 0.083 0.0031 0.0016 

Dataset-

2 

Accuracy (%) 45.835 45.005 36.667 

Type-I error (%) 23.020 46.744 31.552 

Type-II error (%) 54.165 54.995 63.333 

Time (s) 0.0909 0.0050 0.0017 

 

 From Table 2, it is observed that HM-SVM provides 

higher recognition rate than other standard multi-class 

classifiers. However, due to recursive partitioning of the 

data-set the classification time significantly increases. 

Moreover, recognition is very poor with Dataset-2. This 

may be attributed to the fact that the high-dimensional 

features has redundant and irrelevant information that 

increases the computational load (higher classification 

time) and reduces the accuracy such that the surfaces 

become unrecognizable (accuracy less than random guess 

i.e. 50%). 

 To assess the robustness of the designed HM-SVM 

classifier, additive white Gaussian noise (AWGN) is 

gradually added to the features at specified level of 

Signal-to-Noise Ratio (SNR). The mean accuracy for 

classifying the data-set at different SNR is mentioned in 

Table 3. It is noted from Table 3 that as the noise power 

increases (or equivalently the SNR decreases) the 

classification accuracy deteriorates. However, even when 

the SNR is 8dBW the classifier shows 75% classification 

accuracy (averaged over 10 trials). This shows that the 

HM-SVM is sturdy even in presence of high noise. 

 After this, white Gaussian noise is gradually 

introduced in the raw images (which is a representative of 

noise at the source or data acquisition in noisy 

environment). The Gaussian noise has constant mean (m) 

and variance (v) over the entire image. The mean and 

variance of the noise are normalized intensity values. The 

classification accuracy of these noisy images is tabulated 

in Table 4 at different mean and variance. To visualize the 

effect of noise, the first three pre-processing steps for four 

different cases (low mean, low variance; low mean, high 

variance; high mean, low variance; and high mean, high 

variance) are shown in Fig. 4. From both Table 4 and Fig. 

4 it is observed that the algorithm performs well in 

presence of both low and medium noise. Its reason can be 

attributed to the intelligent use of erosion step in the pre-

processing algorithm. However, it fails in presence of 

high noise. 
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Table 3 

Classification Accuracy for the same dataset using HM-SVM in presence of AWGN 

SNR 

(dBW) 

Classification Accuracy (%) Mean Standard 

Deviation Trials 

1 2 3 4 5 6 7 8 9 10 

30 75.00 83.33 75.00 91.67 83.33 91.67 83.33 83.33 83.33 83.33 83.332 5.557 

28 91.67 91.67 83.33 75.00 91.67 75.00 83.33 83.33 75.00 83.33 83.333 6.805 

26 75.00 91.67 83.33 83.33 91.67 75.00 75.00 91.67 83.33 83.33 83.333 6.805 

24 100.00 83.33 75.00 83.33 83.33 91.67 75.00 83.33 75.00 83.33 83.332 7.857 

22 91.67 83.33 75.00 83.33 100.00 75.00 75.00 91.67 83.33 75.00 83.333 8.785 

20 91.67 83.33 75.00 91.67 75.00 75.00 100.00 75.00 83.33 83.33 83.333 8.785 

18 75.00 91.67 83.33 83.33 83.33 91.67 75.00 91.67 75.00 83.33 83.333 6.805 

16 75.00 75.00 91.67 83.33 83.33 75.00 91.67 91.67 83.33 75.00 82.500 7.298 

14 91.67 83.33 83.33 66.67 83.33 75.00 83.33 66.67 83.33 91.67 80.833 8.827 

12 66.67 83.33 91.67 91.67 83.33 83.33 66.67 83.33 75.00 75.00 80.000 8.957 

10 66.67 83.33 83.33 75.00 83.33 66.67 75.00 75.00 91.67 83.33 78.333 8.049 

8 75.00 91.67 66.67 83.33 83.33 75.00 66.67 66.67 66.67 75.00 75.001 8.783 

6 66.67 66.67 75.00 75.00 66.67 50.00 66.67 58.33 58.33 75.00 65.834 8.288 

4 66.67 66.67 50.00 75.00 58.33 58.33 50.00 58.33 58.33 41.67 58.333 9.622 

2 50.00 41.67 50.00 66.67 41.67 41.67 66.67 41.67 58.33 58.33 52.501 9.662 

1 50.00 50.00 58.33 41.67 58.33 58.33 50.00 50.00 50.00 41.67 51.667 7.657 

 

1
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2

2
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2 3
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Figure 4. Initial three pre-processing steps of raw images affected by Gaussian noise with mean m and variance v. (a) m=0.1, 

v=0.01; (b) m=0.1, v=0.09; (c) m=0.5, v=0.01; (d) m=0.5, v=0.09. 

 

 

312



 

Table 4 

Mean Classification Accuracy (%) of images affected by 

white Gaussian noise 

  Variance of Gaussian noise (v) 

  0.01 0.03 0.05 0.07 0.09 

Mean of 

Gaussian 

noise 

(m) 

0.1 83.33 81.67 78.33 72.67 65.00 

0.2 75.00 70.00 68.34 65.00 61.67 

0.3 73.33 66.00 65.00 55.83 46.67 

0.4 63.33 58.33 55.00 46.67 36.67 

0.5 56.67 51.67 46.67 40.00 33.33 

 

 Following this, the classification accuracy of the 

proposed algorithm is compared with LDA and kNN by 

means of McNemar Test which validates the results. 

McNemar Test [17] compares two algorithms and 

assesses which one is better among them. Here, we 

consider HM-SVM as the reference algorithm and 

compare it with either LDA or kNN at a time. The 

symbols given in Fig. 5 are used in McNemar Test where 

this table is called a contingency table used for comparing 

algorithms A and B. 

 

n00=number of samples 

misclassified by A and B  

n01=number of samples 

misclassified by A but not 

by B 

n10=number of samples 

misclassified by B but not 

by A 

n11=number of samples 

misclassified neither by A 

nor by B 

 

Figure 5. Contingency Table McNemar Test. 

 

 According to the null hypothesis, all the classifiers 

are equivalent and thus, n01 and n10 are equal. In this 

study, the data-set is 5-fold cross-validated and the 

classifiers are tested on each fold of the data-set. Thus, 

20% of the dataset = 20% of 1800 samples = 360 samples 

forms the test-set. The values of the contingency table of 

the 5-folds of classification are added to get full coverage 

of the data-set. The McNemar’s statistic with one degree 

of freedom considering the correction factor is given by 

(2). 

 

  
 

2

01 102

01 10

1n n

n n


 



 (2) 

 

 The critical value of chi-square for 95% confidence 

interval is 3.84. If the chi-square value obtained from the 

contingency table is greater than the critical value 
2

1,0.05  

then the null hypothesis is correct only with a probability 

less than 0.05 (in other words null hypothesis is rejected 

for 95% confidence interval). The parameters from 

contingency table used in the test, the chi-square value 

and the acceptance or rejection of null-hypothesis are 

indicated in Table 5. 

 

 Table 5 shows that the null hypothesis is rejected. 

Thus the classifiers are not equivalent. As for both the 

cases n10 is greater than n01 i.e. the number of samples 

misclassified by LDA or kNN but not by HM-SVM is 

greater than the opposite, thus, our claim that the HM-

SVM algorithm is better in recognizing the surfaces than 

LDA and kNN is justified. 

 

Table 5 

Statistical Test: McNemar Test 

Reference Algorithm (A) = HM-SVM 

Classifier 

Algorithm used 

for comparison 

(B) 

Parameters for 

McNemar’s 

Test 

2  Acceptance/ 

Rejection of 

null 

hypothesis n01 n10 

LDA 36 60 5.51 Rejected 

kNN 18 54 17.01 Rejected 

 

 

4. Conclusion 
 
The aim of this work is to process tactile images, combine 
them to obtain enriched information of surface 
irregularities and thus using them to enhance 
classification of the surfaces. Tactile images are acquired 
by exploring four surfaces of different textures (realized 
by different embossed patterns and found in different 
household items). For each observation of 10 seconds, we 
have 100 RGB images. These are converted to grayscale 
images. From the intensity histogram of these images, a 
threshold is obtained using which the grayscale images 
are converted to binary image. The images are eroded to 
obtain more precise region of interest. Edge of the 
required regions are obtained. The edges from all the 100 
images are fused to obtain a single image from which 12 
statistical features based on the gradient, are extracted. 
The feature space is then classified by hierarchical multi-
class Support Vector Machine (HM-SVM). From the 
results, we note superior performance of the HM-SVM 
with respect to LDA and kNN providing an accuracy of 
83.334%. Also, the fusion of edge information from 100 
images of an observation provides more accurate 
identification of surfaces rather than concatenating the 
feature space of each of the 100 component images. This 
is because the images are fused before feature extraction 
and hence the information content of all the images over a 
duration of exploration gets combined thereby increasing 
the information content of the single fused image from 
which the features are extracted. The feature vectors 
constructed in this manner contain the parameters of the 
fused images. Thus, fusion at the image level rather than 
at the feature level increases the information content 
without increasing the feature dimension and thereby 
enhancing the classification accuracy without 
compromising space complexity. The performance of the 
proposed pre-processing steps and the classification 
strategy are tested in presence of system-generated-noise 
which influences the feature space and sensor-acquired-
noise which influences the raw images. HM-SVM shows 
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satisfactory performance providing an accuracy of 75% 
even when SNR is as low as 8dBW. The pre-processing 
stages shows good performance in low and moderate 
noise conditions. It is concluded that the reason for the 
good performance is the intelligent use of erosion step in 
the pre-processing stage of the raw images.  
 Although the surface irregularity sensed depends to 
some extent on the resolution of the sensor, but in future 
we would like to extend this work to include more 
intricate real-life surface textures. Our next step is the 
hardware realization of the proposed method using 
prosthetic device or robotic arm fitted with tactile sensors 
having vibro-tactile actuators for feedback to create a real-
time HCI system. 
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