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ABSTRACT  

This research work presents an oesophageal speech 

improvement algorithm using Wavelet and Kalman Filtering 

approach. In both techniques, it has been used different 

mother wavelet for wavelet approach and different 

measurement noises for Kalman filtering. People who have 

suffered from larynx cancer have enormously low 

intelligibility due to the surgery. A new algorithm has been 

developed to improve the speech quality. The algorithm 

consists of enhancing the Shimmer and HNR parameters 

using Discrete Wavelet Transform (DWT) and Kalman 

Filtering. By taking advantage of the Wavelet Transform's 

special time-frequency properties, a corrective algorithm in 

the form of a wave is applied for the signal intervals in 

which the shimmer measurement goes beyond normal 

levels. Therefore, an atomized control of the signal peaks is 

carried out, having an effect on the normalization of the 

shimmer. Regarding Kalman filtering, it is proved that the 

noise obtained from an oesophageal voice during periods of 

silence is the most suitable. The speech enhancement has 

been measured using Multidimensional Voice Program tool 

(MDVP) [1]. 
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1. Introduction 
 

The laryngectomy is an operation that is performed 

in people with laryngeal cancer. This paper is presented with 

the purpose of helping people who suffered a laryngectomy, 

that is, laryngectomees.  This research work intends to 

provide a solution to the problem suffered by these people 

with respect to communication. The removal of the larynx, 

or laryngectomy, has proven over the years to be a very 

effective treatment for larynx tumours. This operation is 

performed with serious illness such as laryngeal cancer. 

After surgery, patients must learn to speak again. They use 

the oesophagus to blow air into the vocal tract. Due to the 

removal of larynx, the intelligibility of oesophageal speech 

is very low. The main aim is the enhancement of 

oesophageal speech quality in order to make it more 

understandable. 

 

The latest incidence statistics for laryngeal cancer 

in Spain are 2013. In this year, there were 3401 new cases of 

this kind of cancer [2]. It is estimated that there are 136,000 

new cases diagnosed in the world. 

 

The algorithm improves the intelligibility of 

laryngectomees in communications. The main parameters 

transformed in the voice improvement algorithm were 

shimmer [3], and Harmonic to Noise Ratio (HNR) [4]. It is 

well known that these parameters are related to intelligibility 

[5]. In this process, wavelet transform and Kalman filter 

techniques were used. The wavelet transform is used to 

reduce the breathing noise, very typical in oesophageal 

voice. At the same time, the shimmer of the speech is 

improved. The Kalman filter is used to reduce the noise of 

speech. 

 

This work focuses in the improvement of Spanish 

/a/ phoneme like in other researches [5, 6]. The speech 

enhancement has been measured using Multidimensional 

Voice Program tool (MDVP) [1].  

2. Methods  

2.1 Acoustic Parameters Used  

The improvement of voice will be measured by the 

analysis of shimmer and HNR. In order to obtain these two 

parameters it is necessary to measure the pitch. 
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where N is the number of pitch instants and    are pitch 

periods [7, 8, 9].  

Shimmer is a parameter which represents the 

amplitude perturbation of speech at the instants of pitch [3]. 

The voice that is produced in the vocal cords is nearly 

constant in amplitude, thus increasing the value of shimmer 

may involve a symptom of a voice disorder. The equation in 

(2) is used in this paper to measure the shimmer: 
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being Ai the amplitude in the instant i. There are many 

measurements of shimmer but in this work the parameter 

has been calculated in dB [12]. 
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The HNR is defined as the ratio between periodic 

(rp) and aperiodic energy (rap) components (3) [4]: 
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As said in the previous section, these two 

measurements are carried out with the help of the MDVP 

software. This software gives automotive good estimations 

of laryngeal voice signal; however, it does not work 

properly with oesophageal speech. In order to overcome this 

problem the pitch period marks have been introduced 

manually. By so doing, the pitch is calculated and then 

Shimmer and HNR are obtained. 

 

The MDVP is set to measure HNR as the harmonic 

spectral energy in 70 - 4500 Hz frequency band and 

enharmonic spectral energy in 1500 - 4500 Hz band [5, 6]. 

 

2.2 Wavelet Transform Theory 

 

The wavelet transform is a special type of Fourier 

transform which represents a signal in terms of translated 

and scaled versions of a finite wave. This wave is called 

mother wavelet [10, 11 and 12]. Wavelet transform can 

consider as a forms of time-frequency representation. This is 

called the multi-resolution analysis [13, 14]. There are many 

basis functions or mother wavelets families. Among of them 

the most important are: Haar, Symlet, Coiflet, Daubechies, 

Meyer, Biorthogonals etc. [12, 14]. 

 

In this research work Discrete Wavelet Transform 

(DWT) is used, as in other many applications [16]. DWT 

uses two discrete-time filter banks: finite impulse response 

(FIR) and infinite impulse response (IIR). In summary, the 

DWT of a x[n] signal, speech in our case, is calculated by 

passing two filters: low pass filter and high pass filter: 

 

                       
     (4) 
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where the g[n] is the low pass filter and h[n] is the high pass 

filter. One of the filters represents the mother wavelet, the 

highest level of the bandwidth, and the other one, the scaling 

function cover the lowest part [13, 14]. 

 

 

 

 

 

 

 

 

 

Figure 1: Implementation of (4) and (5) as one stage of an 

iterated filter bank. 

The decomposition has halved the time resolution 

but it has half frequency band, therefore, the output has 

double resolution. 

 

This decomposition can be repeated as many times 

as wanted, resulting new decomposition levels. The 

approximation coefficients are decomposed with high and 

low filter in order to obtain a new level. The detail 

coefficients are maintained.  

 

 

2.3 Kalman Filter 

 

The Kalman filter is a set of mathematical 

equations that provide an efficient recursive computational 

solution of the mean square error method. The filter is very 

powerful in several aspects: it states compatible with the 

past, present and future estimations and can do so even 

when the precise nature of the modelled system is unknown. 

Therefore, we could say that the Kalman filter is a linear 

estimator that solves the problem of state estimation of 

dynamic systems with different noises.  

 

Kalman filtering has been used many times in 

speech and it was introduced first in [15]. In many 

contributions white noise is used but coloured noise is 

introduced in [16]. Some Kalman Filter developments have 

been proposed for speech improvement focusing in speech 

modelling [17, 18], others on parameter estimation [19, 20]. 

 

The speech is characterised by clean speech and 

additional zero mean coloured noise. This is performed 

using Autoregresive (AR) model: 

 

                
 
         (6) 

 

where    are Linear Prediction Coefficients (LPC). The 

state transition matrix,     , consists of Linear Prediction 

Coefficients (LPC). In the equation (6), p represents the 

system order and is chosen 14 in this work. 

 

 

3. Design 
 

The general goal of this investigation, and so of all 

the previous researches [5] is the improvement of the 

oesophageal voices’ quality [6]. Certainly the specific aim 

of this research is the spectral and temporal correction of the 

shimmer and HNR parameters of these voices by the 

Wavelet Transform and Kalman Filtering. For that purpose 

two different stages have been concatenated: firstly, wavelet 

stage, and secondly, Kalman filter stage. 

 

The first stage, Wavelet transform, is implemented 

using DWT. Multiresolution analysis says that DWT gives 

good frequency resolution and poor time resolution at low 

frequencies. The general idea of this stage is to apply DWT 

in order to decompose signal in frequency bands for 

denoising 0 - 50 Hz frequency range. 

Approximation g(k) 

h(k)   2 

x[n] 

Detail 

  2 
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Before applying the DWT, the signal is processed. 

That is, a resample of the original signal, x[n], at a sampling 

frequency of 12800 Hz. This is so done, as when applying 

the transformed DWT, the detail signals remain between the 

frequency bands that are suitable for pitch detection [21, 22, 

23, 24, 25 and 26]. More specifically, the oesophageal 

voices have a pitch nearing 60 Hz. On doing the above-

mentioned resample and the following transformed DWT, 

one of the details is found in the frequency band level of 50 

Hz – 100 Hz. This means that the original pitch signal's 

information is located within this detail. Low-frequency 

noise present in oesophageal voices are found in the 0 Hz–

50 Hz level. We should eliminate this noise before 

modifying the pitch's peak amplitude. 

 

In short, so as to control the high rates of the 

shimmer parameter in oesophageal voices, the following 

steps should be taken: carry out a resample of the original 

signal at Fs = 12800 Hz; after this the transformed DWT 

should be done. We have used several mother wavelets. 

 

 
 

Figure 2: Frequency band diagram 

To be precise, we use: Symlet, “bior 6.8”, Coiflet, 

“db6”, Haar and Meyer. Once the DWT transform has been 

done, the low-frequency noise in the 0 Hz – 50 Hz 

frequency band is eliminated. After this pre-processing, the 

amplitude of the maximums in the 50 Hz – 100 Hz 

frequency band is modified, as this is where the information 

on oesophageal voices is to be found. Figure 2 shows the 

frequency band tree when DWT is applied. 

 

The second important step of the algorithm is 

Kalman Filtering (KF). The state transition matrix is 

performed as: 
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In the KF, the incoming real signals are the speech 

and noise. The noise could be randomly created, but in this 

research work different noises have been used: white, 

brown, violet, pink and noise obtained from an oesophageal 

voice during periods of silence. Quantification noise is an 

unwanted but also unavoidable problem of every digital 

system. In this case, as both signals are quantified 

separately, this effect can be minimized without much 

computational load. 

 

 

4.  Results and Conclusion 
 

On the one hand, in the DWT + Kalman Filtering 

algorithm, the inputs of the developed algorithm are the 

samples of the oesophageal voice, which shimmer and HNR 

parameters have been previously evaluated. 

 

After the application of the DWT algorithm based 

on the analysis and processing by different mother wavelet, 

the speech signal has been reconstructed. When measuring 

the shimmer in this reconstructed signal, the obtained results 

are shown in table 1. The differences among the processed 

voices with respect to the original ones are shown in figure 

3. 

As is shown in the table 1 the shimmer has 

improved in 29 of 30 cases for Bior 6.8 mother wavelet. 

Other cases are not significant. This fact can be appreciated 

in figure 3; the red line corresponds to Biot 6.8. It shows 

that this wavelet mother is reducing more shimmer. 

Focusing on statistics results, Wilcoxon test has been 

developed due to the originals samples are not normally 

distributed. Regarding to test, P<0.0001, which means that 

reject the null hypothesis (the average of differences of 

originals and bior 6.8 are equal to zero) and there is 

significances between two groups of samples. The test 

shows that using other wavelets results are: DB6 (P=0.116), 

Meyer (P=0.118), Haar (P=0.139), Coiflet (P=0.181) and 

Symlet (P=0.484). 

 

x(n) (f = 0 – 6.400 Hz; Fs = 12.800 Hz)

a1 (f = 0 – 3.200 Hz) d1 (f = 3.200 Hz – 6.400 Hz)

a2 (f = 0 – 1.600 Hz) d2 (f = 1.600 Hz – 3.200 Hz)

a3 (f = 0 – 800 Hz) d3 (f = 800 Hz– 1.600 Hz)

a4 (f = 0 – 400 Hz) d4 (f = 400 Hz – 800 Hz)

a5 (f = 0 – 200 Hz) d5 (f = 200 Hz – 400 Hz)

a6 (f = 0 – 100 Hz) d6 (f = 100 – 200 Hz)

a7 (f = 0 – 50 Hz) d7 (f = 50 Hz – 100 Hz)
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The usage of the Wavelet Transform for the 

analysis and processing of oesophageal voices is successful 

in the improvement of the shimmer, which is the aim one of 

the paper. Therefore, DWT improvement is suitable 

techniques in the speech enhancement context using a 

suitable mother wavelet.  

 

Regarding to the Kalman filtering and HNR 

parameter, the table 2 shows that the most effective 

measurement noise is the oesophageal voice during periods 

of silence. It reduces the HNR parameter in 3.354 dB in 

average. This fact is appreciated in figure 4 in which green 

line shows the greatest improvement of HNR parameter. 

Focusing on statistics results, T-test has been developed due 

to the originals samples are normally distributed. Regarding 

to test, P<0.0001, which means that reject the null 

hypothesis (the average of processed data with noise during 

the period of silence are equal to originals) and there is 

significances between two groups of samples. The test 

shows that using other noises results are: white (P=0.142), 

pink (P=0.298), brown (P=0.035) and violet (P=0.005). As 

can be seen brown and violet measurement noises are 

significant with respect to originals. Nevertheless, the noise 

during silence gives the best results. 

 

The global improvement in average taking to 

account two stages for shimmer has been 0.5 dB and 2.605 

dB for HNR. 

 

 
 

Table 1: Shimmer (dB) before and after algorithm for different mother wavelets 
 

 Originals Symlet Bior 6.8 Coiflet db6 Haar Meyer 

A1 0,594 0,51 0,106 0,53 0,372 0,0549 0,389 

A2 0,468 0,363 0,227 0,524 0,369 0,565 0,374 

A3 2,734 0,433 0,254 0,563 0,365 0,874 0,932 

A4 0,573 0,831 0,372 0,751 0,809 0,919 0,823 

A5 1,323 1,059 0,959 1,273 1,058 1,062 1,059 

A6 0,796 0,677 0,521 0,642 0,624 0,73 0,819 

A7 0,409 0,382 0,175 0,373 0,381 0,39 0,387 

A8 0,342 0,391 0,186 0,384 0,391 0,38 0,383 

A9 0,673 0,56 0,556 0,567 0,564 0,571 0,586 

A10 0,339 0,537 0,171 0,676 0,528 0,669 0,629 

A11 1,5 1,256 0,816 1,058 1,369 1,232 1,221 

A12 0,412 0,491 0,289 0,484 0,415 0,492 0,474 

A13 0,909 0,965 0,519 0,934 0,955 1,011 0,972 

A14 0,868 0,564 0,346 0,56 0,55 0,587 0,573 

A15 0,416 0,66 0,123 0,622 0,651 0,651 0,634 

A16 0,23 0,603 0,264 0,654 0,582 0,694 0,704 

A17 0,359 0,632 0,289 0,58 0,546 0,554 0,604 

A18 0,71 0,803 0,413 0,772 0,823 0,861 0,746 

A19 2,01 2,504 1,97 2,051 2,436 2,534 2,632 

A20 0,343 0,538 0,124 0,501 0,925 0,483 0,493 

A21 0,863 0,618 0,477 0,663 0,737 0,59 0,665 

A22 0,997 1,318 0,272 0,272 0,287 0,335 0,398 

A23 1,98 1,377 0,712 1,165 1,37 1,121 1,156 

A24 0,494 0,759 0,275 0,519 0,794 0,874 0,533 

A25 1,164 1,706 0,541 1,871 1,698 1,571 1,807 

A26 2,069 0,812 0,599 1,543 0,813 0,755 0,808 

A27 2,002 3,045 2,073 3,737 3,044 3,377 3,036 

A28 2,133 2,361 1,151 1,048 1,151 1,177 1,141 

A29 1,461 0,394 0,208 1,019 0,407 0,446 0,433 

A30 2,772 1,956 1,566 1,989 1,657 1,702 1,636 
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Figure 3:  Shimmer differences with respect the originals 
 

Table 2: HNR (dB) before and after algorithm for different measurement noises 

 

 Originals White Brown Oesophageal Noise Pink Violet 

A1 -2,098 -0,452 0,409 2,037 0,288 -0,404 

A2 -6,959 0,265 1,062 1,265 0,536 0,781 

A3 -7,070 -6,185 -6,238 -4,954 -5,976 -5,805 

A4 -7,979 -7,637 -6,678 -6,35 -6,721 -7,795 

A5 -6,641 -5,836 -5,418 -4,393 -5,026 -7,978 

A6 -0,802 3,658 3,205 3,938 2,591 2,648 

A7 -9,191 -7,28 -6,779 -5,857 -6,067 -6,47 

A8 -8,481 -6,783 -6,953 -5,202 -5,824 -7,013 

A9 -2,526 -3,259 -2,026 -1,512 -1,856 -2,675 

A10 -7,851 -4,589 -4,345 -3,057 -3,598 -5,237 

A11 -7,298 -4,025 -5,954 -3,356 -4,561 -5,438 

A12 -5,425 -4,176 -3,418 -2,782 -3,579 -3,929 

A13 -5,700 -3,899 -3,659 -2,82 -3,762 -4,213 

A14 -2,292 0,264 0,269 1,922 0,936 0,276 

A15 -6,480 -5,462 -5,916 -4,349 -4,671 -4,627 

A16 -5,687 -3,061 -3,733 -2,954 -3,498 -3,751 

A17 -8,557 -4,851 -5,601 -3,525 -4,978 -5,131 

A18 -7,735 -2,491 -2,045 -2,01 -2,802 -2,248 

A19 -7,370 -5,976 -5,136 -4,862 -5,721 -6,657 

A20 -6,570 -5,915 -6,754 -4,914 -5,614 -5,482 

A21 -5,070 -2,887 -2,324 -1,645 -2,741 -4,053 

A22 -5,040 -3,162 -2,871 -2,615 -2,936 -3,22 

A23 -3,644 -1,951 -1,844 -1,012 -1,462 -1,486 

A24 -5,010 -4,812 -4,802 -4,289 -4,524 -4,863 

A25 -6,419 -5,852 -5,763 -5,096 -5,731 -5,591 

A26 -9,309 -1,082 -1,466 -0,944 -1,618 -1,375 

A27 -9,191 -6,504 -6,827 -5,781 -6,615 -6,106 

A28 -6,638 -3,183 -5,045 -2,252 -4,051 -6,248 

A29 -3,772 -2,615 -1,509 -1,427 -1,849 -2,674 

A30 -7,796 -6,562 -5,672 -5,180 -5,561 -5,418 
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Figure 4:  HNR differences with respect the originals 
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