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ABSTRACT 

Locating appropriate service and communicating it to the 
requester at the point of need within the shortest possible 
time is a key issue in ubiquitous health service 
provisioning. Failure to provide the health service at the 
exact time needed can result in erroneous diagnosis and 
treatment. Hence, there is a need for real time service 
discovery of requested services for prompt healthcare 
service provisioning. This paper proposes a peer-to-peer 
health service discovery solution that discovers and 
maintains a set of shortest service path to existing 
healthcare service types within a distributed health service 
network. We introduce an optimal service path cache 
(OSPC) for maintaining the shortest service paths 
provided by learning automata mapped to the super-
nodes. The proposed solution was compared with existing 
methods and showed an improved performance in service 
discovery. 
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1. Introduction 

Timely response to healthcare service requests is a major 
goal of healthcare system [1] [2]. The provision of quality 
and real time health service delivery within the healthcare 
community is confronted with various challenges 
restricting the realization of the desired goal. This is due 
to highly distributed and heterogeneous nature of 
available healthcare services and resources. As a field 
comprising of time critical activities, health service 
provisioning requires adaptive and dynamic service-based 
approaches to address the challenges in the system. 

Moreover, the distributed services require coordinated 
approach in delivering appropriate and reliable services 
when and where they are required. For example, when a 
patient requires diagnosis and treatment from a physician 
other than his primary healthcare physician, there may be 
need to access the patient’s medical record. In emergency 
cases, urgent decisions may be required to save the life of 
a patient and this will necessitate a real time access to the 
needed resources and services.  

Different IT solutions have been explored and integrated 
into healthcare provisioning under the term electronic 
health (eHealth) [3] [4]. One of the solutions that build 
interacting services emerging from distributed and 
heterogeneous resources and applications is the service 
oriented computing (SOC) [5]. SOC depends on service 
oriented architecture (SOA), which integrates distributed 
and heterogeneous applications into a set of interoperable 
services [6]. For areas such as eHealth, SOA offers a 
broad model for implementing large scale enterprise 
applications which defines the interaction between the 
health service providers, requester and the discovery of 
the services the provider advertises by the requester. One 
of the major challenges in the area of SOA application in 
ehealth is real time health service discovery. As 
mentioned earlier, healthcare service request demands 
real time discovery of needed service to prevent 
unfortunate occurrences. This will enable an improved 
healthcare service delivery in diagnosis and treatment of 
patients.   

This paper presents an intelligent real-time healthcare 
service discovery for a typical healthcare service 
networks. This research work introduces an approach that 
learns an optimal path to a service type that is requested 
by a patient. When subsequent requests are made for such 
service type, the system selects the service path with the 
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highest probability to the service. The remainder of this 
paper is arranged as follows. Section 2 describes few of 
the related work. Section 3 describes a typical peer to peer 
service discovery framework. Section 4 gives a 
description of our health service discovery system.  

2. Related work 

A typical peer-to-peer resource sharing network is made 
up of a large number of super-nodes [17]. The super-node 
manages the registration and access to a number of local 
computing resources linked to it. The super-node plays 
two major roles – resource producer and resource 
consumer. As a resource provider, it allows the 
implementation of other super-nodes using its local 
resources and as a resource consumer; it uses the local 
resources of other nodes to execute its tasks. When a 
resource request is forwarded to a super-node, it checks 
the information describing its local resources for the 
availability of the resource. If the resource is available, 
the search terminates, otherwise, the query is forwarded to 
the neighboring super-nodes. This process continues until 
the requested resource is found. Our system differs from 
this approach in that each super-node is mapped to a 
learning automaton that learns and provides the shortest 
service path to the different service types.  

Considering the increase in the size and wide range of 
computer networks and resource sharing systems, 
discovery of resources and services becomes important. 
The scale of deployment of a service discovery 
mechanism determines the design [7].Various search 
techniques are employed by service discovery 
mechanisms to discover services. Some of these search 
techniques include ant colony optimization [8], breadth-
first search [9], hill-climbing search [10], iterative 
deepening [11], and probabilistic forwarding [12] 

Different efforts have been made to improve service 
discovery in SOA based technologies such as web 
service, grid and cloud computing. Tao et al. [13] 
proposed a grid service discovery technique based on 
open shortest path first (OSPF) to address the challenges 
of large query response latencies and potentially overload 
in higher level service index servers. The approach used 
in this work combines the strength of both tree and flat 
architectures. The method reduces small size networks.  

Banaei-Kashani et al [14] presented a web services peer-
to-peer discovery service approach (WSPDS) based on a 
fully decentralized and discovery with semantic level 
service matching capability. To resolve the query 
forwarded by a peer, the network of WSPDS servents

aring network is made up of a large number of super-
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open shortest path first (OSPF) to address the challenges 
of large query response latencies and potentially overload 
in higher level service index servers. The approach used 
in this work combines the strength of both tree and flat 
architectures. The method reduces small size networks.  

Banaei-Kashani et al [14] presented a web services peer-
to-peer discovery service approach (WSPDS) based on a 
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communication and local engines. Every query forwarded 
by a user is received by the servent that checks the local 
site for matching services. If the service is discovered in 
the local site, the servent sends a response message back 
to the query originator. Otherwise, the servent 
collaborates with other servents to propagate the query 
based on probabilistic flooding dissemination mechanism. 
The approach uses TTL to restrict the dissemination of a 
query.  

In his work, [15] introduced a heuristic algorithm for grid 
service discovery based on the concepts of agents. The 
service descriptions of available resources are advertised 
by the grid nodes that are mapped into agents. Each agent 
associated to a grid node manages an Agent Information 
Table (AIT) for recording resource description and 
advertises existing resources to neighboring agents. The 
agent employs flooding whenever a resource is not found 
in the local and adjacent agents. This approach is not 
suitable in dense networks due to the limiting factor in 
scalability.  

In [16], a P2P based grid resource discovery system 
(MAAN) was presented. This approach is an extension of 
the Chord system and supports both single and multi-
attribute range queries. The chord and MAAN handle the 
single attribute and multi-attribute query respectively. 
Every MAAN node represents an instance of the Chord 
system. The paper presented two approaches in handling 
the multi-attribute queries. The first approach divides the 
query into sub-queries that are issued within the 
attribute’s proper space. The approach combines the 
results generated by the sub-queries to verify if there exist 
any resource that matches the attributes specified by the 
query. The second approach presents the complex query 
as a single query to search for a resource that meets the 
requirements stated in the query. This approach eliminates 
bottleneck problems but forwards queries to one neighbor 
at a time. This may create query loss in situations of node 
failure.  

This work proposes a service discovery approach based 
on distributed learning automata. Our system differs from 
most of these approaches in that each super-node is 
mapped to a learning automaton that learns and provides 
the shortest service paths to the different service types.  

3. Learning automata 

The main goal of a learning automaton (LA) is to improve 
its performance by repetitive adjustment of its action 
probabilities through a reinforcement algorithm, thereby 

identifying an optimal action from a set of finite actions 
[18]. The LA selects an action at random from the action 
set based on the action probability vector. The 
environment accepts the selected action as input and 
responds with a consequence to the selected action. The 
action probability vector is updated using the learning 
algorithm. For more on the properties of learning 
automata, we refer the reader to [18-20]. 

The LA can be formally defined as a 6-turple 
{ }GAP ,,,,, σαφ  where ϕ is a set of internal states, α 

represents the set of n possible actions, [ ]1,0=σ  is the 
set of responses presented by the environment to the LA, 
P is the probability vector over the set of states, A denotes 
the reinforcement algorithm for updating the action 
probability vector for each step n based on the 
environment response, and G is the output function

αφ →:G .  

 

Figure 1: The learning automaton and the random 
environment.  

The environment can be defined as a 3-tuple { }σα ,, s  

where { }nααααα ,...,,, 321=  is the finite set of input 

to the environment { }nsssss ,...,,, 321=  represents the 

penalty probability vector, and σ is the set of output 
responses from the environment that are obtained by the 
LA. The responses are often binary { }1,0 where 0 and 1 
denote penalty and reward respectively. If the set of 
environment responses is binary, the model is referred to 
as P-model. The other models are Q-model and S-model 
which refer to responses with finite collection of distinct 
symbols and an interval [0, 1], respectively.  

According to [18], the behavior of a LA can generally be 
classified into expedient and optimal, which is described 
based on the average penalty. An average penalty for a 
LA with random action selection can be defined as 
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Assuming the LA selects an action iα  with probability 

iP  at step t, then the average penalty on )(tP  is 
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Therefore, a learning automaton is expedient if 
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That is, the average penalty is less than oV  

If the LA chooses the highest probability for an action 
associated with the minimum penalty, then it is said to be 
optimal. That is if, 

{ }ii ss min=         (4) 

then 
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4. Healthcare service search framework 

Let 








≡ mnnnnN ,...,,, 321 represent the set of super-

nodes, while 𝐶 ⊆ 𝑁 ∗ 𝑁 represents the set of connections 
between the super nodes where 𝑐𝑗 ∈ 𝐶 and 

miij nnc ++ ⇒1:  is a connection path with sequence of 

nodes leading from 1+in  to min + , then we assume 

( )''' ,CNH  represents the directed communication 
graph spanning from a connected undirected graph 
( )CNH , of health service network. Let 

{ }mkSS k ≤≤= 1|  denote the set of advertised 

service types, where m is the number of service types. A 
learning automaton 𝐴𝑖 ∈ 𝐴 is provided by the system for 
every super-node 𝑛𝑖  ∈ 𝑁. We assume there exist k 
service paths with different lengths (number of traversed 
super-nodes) between the requesting nodes and providing 
nodes, where each service connection path 𝑐𝑗 ∈ 𝐶 is 

associated with a probability from a probability vector P  
of all existing service connection paths for the service 
type. Based on the probability vector P containing the 
probability p of selecting each service path, the learning 
automaton 𝐴𝑖 selects one of the service paths provided by 

the super-node. The environment is activated by the 
selected service path 𝑐𝑗 which in response provides the 
consequence according to the consequence probability of 
the selected path. The consequence can either be a reward 
or penalty. The learning automaton uses a learning 
algorithm to update the service connection paths set 
probability vector P based on the consequence probability 
of the selected path𝑐𝑗. The automaton learns the optimal 
service path 𝑐𝑘  that attracts the maximum probability. 
Furthermore, the learning automaton 𝐴𝑖 maintains the set 
of optimal service paths for the different service types in 
the service path cache maintained by the super-node. The 
search mechanism selects the service path 𝑐𝑖𝑘 with the 
maximum probability that is closest (lowest number of 
traversed nodes) to subsequent service type request. 

The learning automaton for our service network is defined 
as a 6-tuple { }LPRCSN ,,,,,  

• N is a set of nodes of service network H 

• { }mkSS k ≤≤= 1|  is the set of advertised 

service types in H  
• 𝐶 ⊆ 𝑁 × 𝑁 is a set of service connection paths 

where path 𝑐𝑗(𝑛𝑖 ,𝑛𝑚) corresponds to action ∝𝑖𝑚 
of automaton 𝐴𝑖. 

• 𝑅 = {𝑎, 𝑏} is a set of possible consequences for 
selected actions, where b denotes penalty and a 
denotes reward. 

• kP  is a probability vector over a set of service 

connection paths for service type k  such that, 

( )tPjk  is the probability of selecting thj  

connection path for service type k  at step t. 
• L is the learning algorithm automaton 𝐴𝑖 uses to 

update the action set probability vector. If 
( )tPjk  denotes the probability of selecting jth 

path for service type k  at step t, the probability 
is updated by the learning algorithm for a reward 
a as 

𝑃𝑗𝑘(𝑡 + 1) = �
𝑃𝑗𝑘(𝑡) + 𝑎�1 − 𝑃𝑗𝑘(𝑡)�  𝑗 = 𝑖
(1 − 𝑎)𝑃𝑗𝑘(𝑡)           ∀𝑗 ≠ 𝑖  

 (6) 

For penalty b the probability vector is updated as 
 

𝑃𝑗𝑘(𝑡 + 1) = �
(1 − 𝑏)𝑃𝑗𝑘(𝑡)  𝑗 = 𝑖

� 𝑏
𝑟−1

� + (1 − 𝑏)𝑃𝑗𝑘(𝑡)  ∀𝑗 ≠ 𝑖
(7) 
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Figure 2 describes the spanning graph 𝐻′ < 𝑁′,𝐶′ > of 
graph 𝐻 < 𝑁,𝐶 > for a typical healthcare service 
network. A service request emanating from node RN for 
service type 𝑠𝑖 located in PN can traverse different nodes 
within H to get to PN. As shown in the figure, there exist 
different service paths connecting RN and PN. Some of 
these service paths include:  

𝑐1 = 𝑅𝑁 → 𝑛2 → 𝑛3 → 𝑛4 → 𝑛8 → 𝑃𝑁 

𝑐2 = 𝑅𝑁 → 𝑛12 → 𝑛13 → 𝑛10 → 𝑃𝑁 

𝑐3 = 𝑅𝑁 → 𝑛12 → 𝑛6 → 𝑛5 → 𝑛3 → 𝑛4 → 𝑛8 → 𝑃𝑁 

 

Figure 2: A typical communication graph for a service 
network. 

c1, c2, c3 traversed 5, 4 and 7 nodes respectively to 
remotely discover the requested service. c2 attracts a 
higher probability than c1 and c3 because it has a shortest 
path to the required service.  

We assume that a super-node 𝑛𝑖and a number of ordinary 
nodes make up a local health service community h. The 
super-node 𝑛𝑖 manages an index server that holds 
information about existing services within the local 
community. When a user sends a query requesting for any 
health service, the query is directed to the local super-
node to verify the availability of the service within the 
local community from the index server. If an advertised 
service that matches the requirements of the requester is 
discovered within the local health service community, a 
service-hit message is returned to the node where the 
query originated. If the requested service is not found 
within the local community, the super-node forwards the 
query to a set of neighboring super-nodes to search for 
any matching service in their respective local 
communities. Each neighboring super-node checks the set 

of service paths maintained by the OSPC within its 
community for the requested service. If the service path to 
the service is discovered in the node, the request is 
directed to the super-node with the requested service. 
Otherwise, the request is forwarded to the neighboring 
super-nodes.This process is repeated until the requested 
service is discovered. A service-hit message is returned 
with the service location to the requesting node once the 
matching service is found. Whenever a matching service 
is discovered, the connecting paths between the 
requesting node and provider nodes are maintained by the 
super-node of the requesting node for future decision 
making. To prevent the network load caused by sending 
of anomalous query within the network, we adopted the 
dynamic Time-To-Live (TTL) approach that decreases the 
TTL parameter each time a query is forwarded to a new 
super-node [21]. 

 

Figure 3: Local health service community framework. 

Figure 3 describes a service network for local health 
service community. The super-node manages an index 
server that maintains the description of services provided 
by the nodes within the health service community and the 
optimal service path cache (OSPC) that is responsible for 
storing the shortest service paths to existing service types. 
The search mechanism processes the request and searches 
for services advertised by the index server that matches 
the service requested. The service aggregator monitors the 
services within the community and periodically updates 
the index server with current service status to guarantee 
the validity of the information provided by index server. 
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5. Evaluation and results 

We evaluated our algorithm using DEVS-Suite simulator. 
We present different simulation results describing the 
performance of our proposed healthcare service search in 
a service network. The approach in this work is compared 
with both flood based and Genetic Ant Algorithm 
approaches. The experiment is carried out in an 
environment of 400, 500, 600, 700, 800 and 900 nodes 
respectively. The nodes which correspond to the vertices 
of a graph are randomly distributed, undirected with 
randomly distributed services among the nodes. For the 
experiment, we assume a service density of 0.05 in 
environments with nodes less than 500 and density of 
0.06 otherwise. Our aim is to forward the service requests 
among the nodes and determine the length of the 
connection path by computing the number of traversed 
nodes as well as hit rate by the different algorithms. The 
number of traversed service nodes before and after update 
are presented in figure 4 and 5. It is shown figure 4 that 
the performance of the flooding approach is better than 
the Genetic ant algorithm and our approach. This is due to 
the fact that the flooding approach sends anomalous 
requests to the different nodes. The performance is 
followed by the GAA and finally our algorithm. Figure 5 
presents an updated version after the selection and 
reinforcement by the automaton. Our approach records 
the least number of traversed nodes while the flooding 
approach records the highest traversed. Our approach 
presents the least traversed node because, for every 
subsequent request for a service type, our approach 
selects the shortest path to the service and directs the 
request to the providing node.  

 

Figure 4: Average number of traversed nodes during the 
service search. 

 

Figure 5: Average number of traversed node after update. 

 

Figure 6 and 7 describes the hit rate of the three 
approaches before and after update. The hit rate defines 
the number of successful discoveries. Figure 6 shows that 
the hit rate between the three approaches are close before 
the update was made. In Figure 7, our approach shows a 
higher hit rate than the other two approaches due to the 
service density in the environment. In case of higher 
density, the three approaches may record hit rates at close 
range.  

 

 

Figure 6: Average hit rate before update. 
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Figure 7: Average hit rate after update. 

 

6. Conclusion 

In this work, we presented a near real time healthcare 
service discovery approach that uses distributed learning 
automata. Our goal is to identify and keep track of the 
shortest paths to available service types. We have 
described the selection of connection paths from their sets 
and the update of their probability distributions to 
determine the optimal path. The experiment shows that 
our approach performs better than the flooding and GAA 
in subsequent request for a service type. For future works, 
the performance of the algorithm can be optimized to 
accommodate larger number of connection paths. 
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