
AN OPTIMAL HEALTH SERVICE DISCOVERY FOR UBIQUITOUS
HEALTH SERVICE PROVISIONING

Moses O. Olaifa, Sunday O. Ojo, Tranos Zuva

Department of Computer Systems Engineering,
Faculty of Information and Communication Technology

Tshwane University of Technology, Pretoria, South Africa
{olaifamo, ojoso, zuvat}@tut.ac.za

ABSTRACT

Locating appropriate service and communicating it to the
requester at the point of need within the shortest possible
time is a key issue in ubiquitous health service
provisioning. Failure to provide the health service at the
exact time needed can result in erroneous diagnosis and
treatment. Hence, there is a need for real time service
discovery of requested services for prompt healthcare
service provisioning. This paper proposes a peer-to-peer
health service discovery solution that discovers and
maintains a set of shortest service path to existing
healthcare service types within a distributed health service
network. We introduce an optimal service path cache
(OSPC) for maintaining the shortest service paths
provided by learning automata mapped to the super-
nodes. The proposed solution was compared with existing
methods and showed an improved performance in service
discovery.

KEY WORDS

Peer-to-peer, service oriented computing, healthcare
service, service discovery. ubiquitous.

1. Introduction

Timely response to healthcare service requests is a major
goal of healthcare system [1] [2]. The provision of quality
and real time health service delivery within the healthcare
community is confronted with various challenges
restricting the realization of the desired goal. This is due
to highly distributed and heterogeneous nature of
available healthcare services and resources. As a field
comprising of time critical activities, health service
provisioning requires adaptive and dynamic service-based
approaches to address the challenges in the system.

Moreover, the distributed services require coordinated
approach in delivering appropriate and reliable services
when and where they are required. For example, when a
patient requires diagnosis and treatment from a physician
other than his primary healthcare physician, there may be
need to access the patient’s medical record. In emergency
cases, urgent decisions may be required to save the life of
a patient and this will necessitate a real time access to the
needed resources and services.

Different IT solutions have been explored and integrated
into healthcare provisioning under the term electronic
health (eHealth) [3] [4]. One of the solutions that build
interacting services emerging from distributed and
heterogeneous resources and applications is the service
oriented computing (SOC) [5]. SOC depends on service
oriented architecture (SOA), which integrates distributed
and heterogeneous applications into a set of interoperable
services [6]. For areas such as eHealth, SOA offers a
broad model for implementing large scale enterprise
applications which defines the interaction between the
health service providers, requester and the discovery of
the services the provider advertises by the requester. One
of the major challenges in the area of SOA application in
ehealth is real time health service discovery. As
mentioned earlier, healthcare service request demands
real time discovery of needed service to prevent
unfortunate occurrences. This will enable an improved
healthcare service delivery in diagnosis and treatment of
patients.

This paper presents an intelligent real-time healthcare
service discovery for a typical healthcare service
networks. This research work introduces an approach that
learns an optimal path to a service type that is requested
by a patient. When subsequent requests are made for such
service type, the system selects the service path with the

 Biomedical Engineering, Vol. 11, No. 1, 2014

DOI: 10.2316/J.2014.216.815-0004 262

highest probability to the service. The remainder of this
paper is arranged as follows. Section 2 describes few of
the related work. Section 3 describes a typical peer to peer
service discovery framework. Section 4 gives a
description of our health service discovery system.

2. Related work

A typical peer-to-peer resource sharing network is made
up of a large number of super-nodes [17]. The super-node
manages the registration and access to a number of local
computing resources linked to it. The super-node plays
two major roles – resource producer and resource
consumer. As a resource provider, it allows the
implementation of other super-nodes using its local
resources and as a resource consumer; it uses the local
resources of other nodes to execute its tasks. When a
resource request is forwarded to a super-node, it checks
the information describing its local resources for the
availability of the resource. If the resource is available,
the search terminates, otherwise, the query is forwarded to
the neighboring super-nodes. This process continues until
the requested resource is found. Our system differs from
this approach in that each super-node is mapped to a
learning automaton that learns and provides the shortest
service path to the different service types.

Considering the increase in the size and wide range of
computer networks and resource sharing systems,
discovery of resources and services becomes important.
The scale of deployment of a service discovery
mechanism determines the design [7].Various search
techniques are employed by service discovery
mechanisms to discover services. Some of these search
techniques include ant colony optimization [8], breadth-
first search [9], hill-climbing search [10], iterative
deepening [11], and probabilistic forwarding [12]

Different efforts have been made to improve service
discovery in SOA based technologies such as web
service, grid and cloud computing. Tao et al. [13]
proposed a grid service discovery technique based on
open shortest path first (OSPF) to address the challenges
of large query response latencies and potentially overload
in higher level service index servers. The approach used
in this work combines the strength of both tree and flat
architectures. The method reduces small size networks.

Banaei-Kashani et al [14] presented a web services peer-
to-peer discovery service approach (WSPDS) based on a
fully decentralized and discovery with semantic level
service matching capability. To resolve the query
forwarded by a peer, the network of WSPDS servents

aring network is made up of a large number of super-
nodes [17]. The super-node manages the registration and
access to a number of local computing resources linked to
it. The super-node plays two major roles – resource
producer and resource consumer. As a resource provider,
it allows the implementation of other super-nodes using
its local resources and as a resource consumer; it uses the
local resources of other nodes to execute its tasks. When a
resource request is forwarded to a super-node, it checks
the information describing its local resources for the
availability of the resource. If the resource is available,
the search terminates, otherwise, the query is forwarded to
the neighboring super-nodes. This process continues until
the requested resource is found. Our system differs from
this approach in that each super-node is mapped to a
learning automaton that learns and provides the shortest
service path to the different service types.

Considering the increase in the size and wide range of
computer networks and resource sharing systems,
discovery of resources and services becomes important.
The scale of deployment of a service discovery

mechanism determines the design [7].Various search
techniques are employed by service discovery
mechanisms to discover services. Some of these search
techniques include ant colony optimization [8], breadth-
first search [9], hill-climbing search [10], iterative
deepening [11], and probabilistic forwarding [12]

Different efforts have been made to improve service
discovery in SOA based technologies such as web
service, grid and cloud computing. Tao et al. [13]
proposed a grid service discovery technique based on
open shortest path first (OSPF) to address the challenges
of large query response latencies and potentially overload
in higher level service index servers. The approach used
in this work combines the strength of both tree and flat
architectures. The method reduces small size networks.

Banaei-Kashani et al [14] presented a web services peer-
to-peer discovery service approach (WSPDS) based on a
fully decentralized and discovery with semantic level
service matching capability. To resolve the query
forwarded by a peer, the network of WSPDS servents
work in collaboration. The servent comprises of the

263

communication and local engines. Every query forwarded
by a user is received by the servent that checks the local
site for matching services. If the service is discovered in
the local site, the servent sends a response message back
to the query originator. Otherwise, the servent
collaborates with other servents to propagate the query
based on probabilistic flooding dissemination mechanism.
The approach uses TTL to restrict the dissemination of a
query.

In his work, [15] introduced a heuristic algorithm for grid
service discovery based on the concepts of agents. The
service descriptions of available resources are advertised
by the grid nodes that are mapped into agents. Each agent
associated to a grid node manages an Agent Information
Table (AIT) for recording resource description and
advertises existing resources to neighboring agents. The
agent employs flooding whenever a resource is not found
in the local and adjacent agents. This approach is not
suitable in dense networks due to the limiting factor in
scalability.

In [16], a P2P based grid resource discovery system
(MAAN) was presented. This approach is an extension of
the Chord system and supports both single and multi-
attribute range queries. The chord and MAAN handle the
single attribute and multi-attribute query respectively.
Every MAAN node represents an instance of the Chord
system. The paper presented two approaches in handling
the multi-attribute queries. The first approach divides the
query into sub-queries that are issued within the
attribute’s proper space. The approach combines the
results generated by the sub-queries to verify if there exist
any resource that matches the attributes specified by the
query. The second approach presents the complex query
as a single query to search for a resource that meets the
requirements stated in the query. This approach eliminates
bottleneck problems but forwards queries to one neighbor
at a time. This may create query loss in situations of node
failure.

This work proposes a service discovery approach based
on distributed learning automata. Our system differs from
most of these approaches in that each super-node is
mapped to a learning automaton that learns and provides
the shortest service paths to the different service types.

3. Learning automata

The main goal of a learning automaton (LA) is to improve
its performance by repetitive adjustment of its action
probabilities through a reinforcement algorithm, thereby

identifying an optimal action from a set of finite actions
[18]. The LA selects an action at random from the action
set based on the action probability vector. The
environment accepts the selected action as input and
responds with a consequence to the selected action. The
action probability vector is updated using the learning
algorithm. For more on the properties of learning
automata, we refer the reader to [18-20].

The LA can be formally defined as a 6-turple
{ }GAP ,,,,, σαφ where ϕ is a set of internal states, α

represents the set of n possible actions, []1,0=σ is the
set of responses presented by the environment to the LA,
P is the probability vector over the set of states, A denotes
the reinforcement algorithm for updating the action
probability vector for each step n based on the
environment response, and G is the output function

αφ →:G .

Figure 1: The learning automaton and the random
environment.

The environment can be defined as a 3-tuple { }σα ,, s

where { }nααααα ,...,,, 321= is the finite set of input

to the environment { }nsssss ,...,,, 321= represents the

penalty probability vector, and σ is the set of output
responses from the environment that are obtained by the
LA. The responses are often binary { }1,0 where 0 and 1
denote penalty and reward respectively. If the set of
environment responses is binary, the model is referred to
as P-model. The other models are Q-model and S-model
which refer to responses with finite collection of distinct
symbols and an interval [0, 1], respectively.

According to [18], the behavior of a LA can generally be
classified into expedient and optimal, which is described
based on the average penalty. An average penalty for a
LA with random action selection can be defined as

k
sss

V k
o

+++
=

...21

 (1)

264

Assuming the LA selects an action iα with probability

iP at step t, then the average penalty on)(tP is

∑ =
=

k

i ii stPtV
1

)()(
 (2)

Therefore, a learning automaton is expedient if

[] ot
VtVE <

∞→
)(lim

 (3)

That is, the average penalty is less than oV

If the LA chooses the highest probability for an action
associated with the minimum penalty, then it is said to be
optimal. That is if,

{ }ii ss min= (4)

then

[] it
stVE =

∞→
)(lim (5)

4. Healthcare service search framework

Let








≡ mnnnnN ,...,,, 321 represent the set of super-

nodes, while 𝐶 ⊆ 𝑁 ∗ 𝑁 represents the set of connections
between the super nodes where 𝑐𝑗 ∈ 𝐶 and

miij nnc ++ ⇒1: is a connection path with sequence of

nodes leading from 1+in to min + , then we assume

()''' ,CNH represents the directed communication
graph spanning from a connected undirected graph
()CNH , of health service network. Let

{ }mkSS k ≤≤= 1| denote the set of advertised

service types, where m is the number of service types. A
learning automaton 𝐴𝑖 ∈ 𝐴 is provided by the system for
every super-node 𝑛𝑖 ∈ 𝑁. We assume there exist k
service paths with different lengths (number of traversed
super-nodes) between the requesting nodes and providing
nodes, where each service connection path 𝑐𝑗 ∈ 𝐶 is

associated with a probability from a probability vector P
of all existing service connection paths for the service
type. Based on the probability vector P containing the
probability p of selecting each service path, the learning
automaton 𝐴𝑖 selects one of the service paths provided by

the super-node. The environment is activated by the
selected service path 𝑐𝑗 which in response provides the
consequence according to the consequence probability of
the selected path. The consequence can either be a reward
or penalty. The learning automaton uses a learning
algorithm to update the service connection paths set
probability vector P based on the consequence probability
of the selected path𝑐𝑗. The automaton learns the optimal
service path 𝑐𝑘 that attracts the maximum probability.
Furthermore, the learning automaton 𝐴𝑖 maintains the set
of optimal service paths for the different service types in
the service path cache maintained by the super-node. The
search mechanism selects the service path 𝑐𝑖𝑘 with the
maximum probability that is closest (lowest number of
traversed nodes) to subsequent service type request.

The learning automaton for our service network is defined
as a 6-tuple { }LPRCSN ,,,,,

• N is a set of nodes of service network H

• { }mkSS k ≤≤= 1| is the set of advertised

service types in H
• 𝐶 ⊆ 𝑁 × 𝑁 is a set of service connection paths

where path 𝑐𝑗(𝑛𝑖 ,𝑛𝑚) corresponds to action ∝𝑖𝑚
of automaton 𝐴𝑖.

• 𝑅 = {𝑎, 𝑏} is a set of possible consequences for
selected actions, where b denotes penalty and a
denotes reward.

• kP is a probability vector over a set of service

connection paths for service type k such that,

()tPjk is the probability of selecting thj

connection path for service type k at step t.
• L is the learning algorithm automaton 𝐴𝑖 uses to

update the action set probability vector. If
()tPjk denotes the probability of selecting jth

path for service type k at step t, the probability
is updated by the learning algorithm for a reward
a as

𝑃𝑗𝑘(𝑡 + 1) = �
𝑃𝑗𝑘(𝑡) + 𝑎�1 − 𝑃𝑗𝑘(𝑡)� 𝑗 = 𝑖
(1 − 𝑎)𝑃𝑗𝑘(𝑡) ∀𝑗 ≠ 𝑖

 (6)

For penalty b the probability vector is updated as

𝑃𝑗𝑘(𝑡 + 1) = �
(1 − 𝑏)𝑃𝑗𝑘(𝑡) 𝑗 = 𝑖

� 𝑏
𝑟−1

� + (1 − 𝑏)𝑃𝑗𝑘(𝑡) ∀𝑗 ≠ 𝑖
(7)

265

Figure 2 describes the spanning graph 𝐻′ < 𝑁′,𝐶′ > of
graph 𝐻 < 𝑁,𝐶 > for a typical healthcare service
network. A service request emanating from node RN for
service type 𝑠𝑖 located in PN can traverse different nodes
within H to get to PN. As shown in the figure, there exist
different service paths connecting RN and PN. Some of
these service paths include:

𝑐1 = 𝑅𝑁 → 𝑛2 → 𝑛3 → 𝑛4 → 𝑛8 → 𝑃𝑁

𝑐2 = 𝑅𝑁 → 𝑛12 → 𝑛13 → 𝑛10 → 𝑃𝑁

𝑐3 = 𝑅𝑁 → 𝑛12 → 𝑛6 → 𝑛5 → 𝑛3 → 𝑛4 → 𝑛8 → 𝑃𝑁

Figure 2: A typical communication graph for a service
network.

c1, c2, c3 traversed 5, 4 and 7 nodes respectively to
remotely discover the requested service. c2 attracts a
higher probability than c1 and c3 because it has a shortest
path to the required service.

We assume that a super-node 𝑛𝑖and a number of ordinary
nodes make up a local health service community h. The
super-node 𝑛𝑖 manages an index server that holds
information about existing services within the local
community. When a user sends a query requesting for any
health service, the query is directed to the local super-
node to verify the availability of the service within the
local community from the index server. If an advertised
service that matches the requirements of the requester is
discovered within the local health service community, a
service-hit message is returned to the node where the
query originated. If the requested service is not found
within the local community, the super-node forwards the
query to a set of neighboring super-nodes to search for
any matching service in their respective local
communities. Each neighboring super-node checks the set

of service paths maintained by the OSPC within its
community for the requested service. If the service path to
the service is discovered in the node, the request is
directed to the super-node with the requested service.
Otherwise, the request is forwarded to the neighboring
super-nodes.This process is repeated until the requested
service is discovered. A service-hit message is returned
with the service location to the requesting node once the
matching service is found. Whenever a matching service
is discovered, the connecting paths between the
requesting node and provider nodes are maintained by the
super-node of the requesting node for future decision
making. To prevent the network load caused by sending
of anomalous query within the network, we adopted the
dynamic Time-To-Live (TTL) approach that decreases the
TTL parameter each time a query is forwarded to a new
super-node [21].

Figure 3: Local health service community framework.

Figure 3 describes a service network for local health
service community. The super-node manages an index
server that maintains the description of services provided
by the nodes within the health service community and the
optimal service path cache (OSPC) that is responsible for
storing the shortest service paths to existing service types.
The search mechanism processes the request and searches
for services advertised by the index server that matches
the service requested. The service aggregator monitors the
services within the community and periodically updates
the index server with current service status to guarantee
the validity of the information provided by index server.

266

5. Evaluation and results

We evaluated our algorithm using DEVS-Suite simulator.
We present different simulation results describing the
performance of our proposed healthcare service search in
a service network. The approach in this work is compared
with both flood based and Genetic Ant Algorithm
approaches. The experiment is carried out in an
environment of 400, 500, 600, 700, 800 and 900 nodes
respectively. The nodes which correspond to the vertices
of a graph are randomly distributed, undirected with
randomly distributed services among the nodes. For the
experiment, we assume a service density of 0.05 in
environments with nodes less than 500 and density of
0.06 otherwise. Our aim is to forward the service requests
among the nodes and determine the length of the
connection path by computing the number of traversed
nodes as well as hit rate by the different algorithms. The
number of traversed service nodes before and after update
are presented in figure 4 and 5. It is shown figure 4 that
the performance of the flooding approach is better than
the Genetic ant algorithm and our approach. This is due to
the fact that the flooding approach sends anomalous
requests to the different nodes. The performance is
followed by the GAA and finally our algorithm. Figure 5
presents an updated version after the selection and
reinforcement by the automaton. Our approach records
the least number of traversed nodes while the flooding
approach records the highest traversed. Our approach
presents the least traversed node because, for every
subsequent request for a service type, our approach
selects the shortest path to the service and directs the
request to the providing node.

Figure 4: Average number of traversed nodes during the
service search.

Figure 5: Average number of traversed node after update.

Figure 6 and 7 describes the hit rate of the three
approaches before and after update. The hit rate defines
the number of successful discoveries. Figure 6 shows that
the hit rate between the three approaches are close before
the update was made. In Figure 7, our approach shows a
higher hit rate than the other two approaches due to the
service density in the environment. In case of higher
density, the three approaches may record hit rates at close
range.

Figure 6: Average hit rate before update.

267

Figure 7: Average hit rate after update.

6. Conclusion

In this work, we presented a near real time healthcare
service discovery approach that uses distributed learning
automata. Our goal is to identify and keep track of the
shortest paths to available service types. We have
described the selection of connection paths from their sets
and the update of their probability distributions to
determine the optimal path. The experiment shows that
our approach performs better than the flooding and GAA
in subsequent request for a service type. For future works,
the performance of the algorithm can be optimized to
accommodate larger number of connection paths.

Reference

[1] Hameed, S.A., et al., An efficient emergency,
healthcare, and medical information system.
International Journals of Biometric and
Bioinformatics (IJBB), 2008. 2(5): p. 1-9.

[2] Coskun, N. and R. Erol, An optimization model
for locating and sizing emergency medical
service stations. Journal of medical systems,
2010. 34(1): p. 43-49.

[3] Ball, M.J. and J. Lillis, E-health: transforming
the physician/patient relationship. International
journal of medical informatics, 2001. 61(1): p. 1-
10.

[4] Hardey, M., 'E-health': the internet and the
transformation of patients into consumers and
producers of health knowledge. Information,
Communication & Society, 2001. 4(3): p. 388-
405.

[5] Papazoglou, M.P. Service-oriented computing:
Concepts, characteristics and directions. in Web
Information Systems Engineering, 2003. WISE
2003. Proceedings of the Fourth International
Conference on. 2003. IEEE.

[6] Cao, B.-Q., B. Li, and Q.-M. Xia, A service-
oriented QoS-assured and multi-agent cloud
computing architecture, in Cloud
Computing2009, Springer. p. 644-649.

[7] Meshkova, E., et al., A survey on resource
discovery mechanisms, peer-to-peer and service
discovery frameworks. Computer Networks,
2008. 52(11): p. 2097-2128.

[8] Dorigo, M., Ant Colony Optimization and Swarm
Intelligence: 5th International Workshop, ANTS
2006, Brussels, Belgium, September 4-7, 2006,
Proceedings. Vol. 4150. 2006: Springer-Verlag
New York Incorporated.

[9] Bader, D.A. and K. Madduri. Designing
multithreaded algorithms for breadth-first
search and st-connectivity on the Cray MTA-2.
in Parallel Processing, 2006. ICPP 2006.
International Conference on. 2006. IEEE.

[10] Gent, I.P. and T. Walsh. Towards an
understanding of hill-climbing procedures for
SAT. in AAAI. 1993. Citeseer.

[11] Lv, Q., et al. Search and replication in
unstructured peer-to-peer networks. in
Proceedings of the 16th international conference
on Supercomputing. 2002. ACM.

[12] Liu, C. and J. Wu. An optimal probabilistic
forwarding protocolin delay tolerant networks.
in Proceedings of the tenth ACM international
symposium on Mobile ad hoc networking and
computing. 2009. ACM.

[13] Tao, Y., et al. GNSD: a novel service discovery
mechanism for grid environment. in Next
Generation Web Services Practices, 2006.
NWeSP 2006. International Conference on.
2006. IEEE.

[14] Banaei-Kashani, F., C.-C. Chen, and C. Shahabi.
Wspds: Web services peer-to-peer discovery
service. in Proceedings of the International
Conference on Internet Computing. 2004.
Citeseer.

[15] Ding, S., J. Yuan, and L. Hu. A heuristic
algorithm for agent-based grid resource
discovery. in e-Technology, e-Commerce and e-
Service, 2005. EEE'05. Proceedings. The 2005
IEEE International Conference on. 2005. IEEE.

[16] Cai, M., et al., Maan: A multi-attribute
addressable network for grid information
services. Journal of Grid Computing, 2004. 2(1):
p. 3-14.

[17] Beverly Yang, B. and H. Garcia-Molina.
Designing a super-peer network. in Data
Engineering, 2003. Proceedings. 19th
International Conference on. 2003. IEEE.

268

[18] Narendra, K.S. and M. Thathachar, Learning
automata-a survey. Systems, Man and
Cybernetics, IEEE Transactions on, 1974(4): p.
323-334.

[19] Narendra, K. and M. Thathachar, Learning
automata: an introduction. 1989. Printice-Hall,
New York.

[20] Narendra, K.S. and M.A. Thathachar, Learning
automata: an introduction2012:
DoverPublications. com.

[21] McGeehan, J.E., et al. Optical time-to-live
decrementing and subsequent dropping of an
optical packet. in Optical Fiber Communication
Conference. 2003. Optical Society of America.

269

	1. Introduction
	2. Related work
	3. Learning Automata
	4. Healthcare service search framework
	5. Evaluation and Results
	6. Conclusion

