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Abstract

Recently, various software reliability growth models (SRGMs) have

been proposed to assess software reliability. Some important

issues in these models include the S-curve or exponential testing

behaviour, the change-points in process performance, estimation of

the parameters, variations in potential errors, and learning effects

in the testing process. This paper provides an integrated SRGM

with time-varying learning effects to deal with multiple situations of

software testing/debugging, based on the non-homogeneous Poisson

process (NHPP) to satisfy both S-shaped and exponential-shaped

types simultaneously. An exponential learning function is adopted

to describe the learning effects varied with time, and a sine function

is also adopted to point out the change-points for the testing

environment and the various potential errors. The results show

better fit than those of other models with actual data sets. This

study also verifies the effectiveness of the proposed model with R2,

mean square error, and RRMS and LSE. criteria. The proposed

model not only provides good numerical prediction performance for

several different kinds of data but also explains the testing/debugging

behaviour of the testing staff, the learning effects of the testing

project itself, and the changes in the testing environment necessary

to improve software system testing and management.
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1. Introduction

Software reliability growth is an important issue in the
software industry as it can provide critical information for
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developers and testing staff during the testing/debugging
phase. Over the last few decades, many software reliability
growth models (SRGMs) have been developed that ad-
dress some important major issues, such as S-shaped [32],
[35] or exponential-shaped testing/debugging behaviour,
constant or variable potential errors, and stable or un-
stable testing/debugging environments. Various methods
have been used in these models, such as the stochastic
differential equation, confidence interval estimation, soft
computing, and Bayesian approaches. This study pro-
vides integrated models by which to assess the mean value
functions of an SRGM that can simultaneously describe
S-shaped and exponential-shaped testing/debugging be-
haviour, variable potential errors, both stable and un-
stable testing/debugging environments, and constant and
variable learning effects. This research adopts Chiu’s [1]
models and employs a sine function [2] to discuss a test-
ing/debugging environment with time-varying learning ef-
fects. This paper also examines the effectiveness of the
proposed models with R2, mean square error (MSE ), and
RRMS criteria, and discusses when and what kinds learn-
ing effects occur and how these influence the software re-
liability. The results show good fit with the actual data,
and these integrated models thus successfully explain many
situations that can occur in the testing/debugging process.

2. Literature Review

SRGMs are mathematical functions that characterize
the software testing/debugging process and explain how
errors are removed. Various stochastic models have
been proposed to assess software reliability some of
which are based on the non-homogeneous Poisson process
(NHPP), and they have been fairly effective in describ-
ing the error-detection process with a time-dependent
error-detection rate.

Most SRGM functions assume that each time an error
occurs, the fault that caused it can be immediately removed
and that no new errors will be introduced, which is known
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as perfect debugging, although imperfect debugging has
also been considered to loosen this restrictive assumption
[3]. Gokhale and Trivedi (1999) stated that the assumption
of statistical independence for the number of events occur-
ring in disjointed time intervals is constantly violated when
SRGMs based on NHPP are used, and thus proposed an
enhanced NHPP model to allow time-dependent failures to
occur in the debugging process.

Learning effects usually occur when staff are involved
in a production or service activity, and it is important
to investigate how these learning effects will affect task
time and cost. Several studies have noted that learning
effects exist in the software testing/debugging process [4],
and the use of an S-shaped mean value function in an
SRGM implies their existence [5]–[7] (Yamada et al., 1992).
Learning effects have been shown to cause the failure
function to have a decreasing curve in the initial testing
period [8]. Some studies of scheduling have suggested that
learning effects for planning different operating time for
the same items [9]. Kapur et al. [10] adopted testing
efforts and staff improvements to build an SRGM. Chiu
et al. [11] constructed an SRGM with learning effects
based on NHPP and estimated both linear and exponential
learning effects, including these in a later SRGM [1]. The
change-points in the testing/debugging process have been
discussed in some studies [29], [36] and the change-points in
the testing/debugging process with time-varying learning
effects for actual data sets have also been discussed [12].

In some cases, due to different testing/debugging
strategies or resource allocations, software reliability may
non-monotonically increase or decrease. Zhao [13] iden-
tified the change-points problem, and stated that its
effects should be considered along with software reliabil-
ity. Shyur [14] developed a generalized SRGM by incor-
porating imperfect debugging with change-points. Huang
[7] incorporated both a generalized logistic testing-effort
function and a change-points parameter into an SRGM
and discussed SRGM with multiple change-points by using
queuing models [15], [16]. Inoue et al. [17] provided the
two-dimensional change-points SRGM. Kapur et al. [18]
examined the severity of errors produced by an SRGM
with change-points.

Recently, there has been a great deal of research exam-
ining imperfect debugging in which the testing/debugging
process involves two parts: predicting failure time and
removing errors [31], [33], [34] with programmers using de-
bugger break points for the former (Horwitz et al., 2010)
as well as call stack-sensitive slicing to increase debugging
effectiveness. Bai et al. [19] stated that remaining soft-
ware defect estimation (RSDE) can describe the dynamic
behaviour that occurs in the testing process and presented
both simple and change-point models to trace the testing
process. Imperfect debugging has also been widely dis-
cussed in the literature with the aim of overcoming this
restrictive assumption [3], [14], [20]–[24] (Huang et al.,
2007). Dick et al. [25] compared two models for stochastic
and non-linear processes that used a chaotic-time-series
analysis to make predictions. They called the resulting ap-
proach radial basis function networks (RBFN), and showed
that it had better results than other models.

3. The Integrated SRGM Model with Time-
Varying Learning Effects

3.1 Model Definition

The proposed models consider multiple situations in the
software testing/debugging process, which include fluctu-
ating testing environments, the variable potential errors,
the time-varying learning effects, and the adoption of time-
varying learning functions [1] and the sine function [2] to
construct an integrated SRGM model based on the NHPP.
The explanations of the main expressions in the proposed
model are described as follows.

3.1.1 Notations

The following notations will be used throughout this study:

a: the initial number of all potential errors in the
software system

α: the autonomous errors-detection factor
η: the learning factor
η(t): the learning effect function with exponential

learning effects
ξ: the accelerative factor with time of learning

effect
r(t): the rate of extra variation to potential errors
ν: the fluctuating factor
δ: the project characteristic factor
θj: the change-point
m(t): the mean value function of the software

error-detection process, which is the expected
number of errors detected within time (0, t)

m1(t): the mean value function with exponential
learning effects

The concept of this study is that with time, the po-
tential errors will become the detected errors using the
testing/debugging process and that the count depends on
the autonomous errors-detection factor and the learning
effects, the former related to the initial condition of testing
staff and the latter related to learning effects from the test-
ing/debugging process which vary with time. Sometimes,
the potential errors will vary unexpectedly, and the count
can be either positive or negative and may fluctuate with
time but remain close to zero, progressively.

3.1.2 Time-Varying Learning Effects

Learning effects mean when staffs are involved in a pro-
duction or service activity, the operation will be practiced.
Many researchers have noted that learning effects exist in
the software testing/debugging process. Chiu et al., 2008
constructed an SRGM with constant learning effects. In
practice, the learning effects will vary with time and will in-
clude both linear and exponential learning effects induced
in later SRGMs [1]. In this study, the exponential learning
function was adopted to represent the exponential growth
of learning effects with time, and the function is given as
(1). The factor ξ is the coefficient of the accelerative effect:

η(t) = ηeξt (1)
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3.1.3 Variable Potential Errors

In this study, perfect debugging means that each time an
error occurs, the fault that caused it can be immediately
removed and that no new errors will be introduced. Im-
perfect debugging means that an error being removed will
deal with or induce another error unconsciously, which im-
plies that potential errors will vary with testing/debugging
time.

In practice, staff will either include new errors or deal
with other errors unconsciously when they work, which
will change the rate of potential errors. The rate of extra
variation to potential errors should be considered in an
imperfect debugging process, as wrongly fixing an error
may cause more errors; while correctly debugging an error
may resolve other errors, and this number will gradually
converge as the testing staff becomes more familiar with
the software system. Accordingly, an imperfect debugging
method will have an impact on the rate of potential errors.
Suppose that the rate of extra variation to potential errors
can be modelled by a sine function [2] as it is able to
describe the fluctuating nature of the debugging process
within the software testing period. By employing a param-
eter of the fluctuating factor ν to exponentially adjust the
decreasing amplitude and a parameter δ to describe the
characteristic of the software project, the rate of variation
can be given as (2):

r(t) = e−νt · sin
(π
2
δt
)

(2)

3.1.4 Change-Point

Sometimes, a software testing/debugging project will ex-
perience changes in the testing condition that will cause
variations in the testing performance, and these situations
are considered with change-point in this research. Accord-
ingly, the time points while the testing performance goes
through a critical change will be the change-points that
will be judged by variations in the value of r(t), as in
(2). For example, the parameters α, η, ξ, ν, δ, and a in this
model can be obtained by using numerical methods with
the historical data in the data set [1] and with the curve
of the r(t) drawn as shown in Fig. 1. As we can see, the
curve of the value of the rate of extra variation to potential
errors was diverted from increasing to decreasing at the 6th
week and diverted to increasing at the 11th week. We can
therefore assume the software testing/debugging project
must experience changes at the 6th and 11th weeks, then
modified the parameters αi, ηi, and ξi in these three peri-
ods: before the 6th week, during the 6th week through the
11th week, and after the 11th week.

3.2 Model Development

According to Chiu’s (2008) model, the mean value function
of the software error-detection process can be written as
(3), which assumes the learning effects are constant:

Figure 1. The variations in the value of r(t) to judge the
change-points.

m(t) = aH(t) = a

⎛
⎝1− 1 +

η

α
η

α
+ e(α+η)t

⎞
⎠ (3)

In practice, the learning effects will vary with time,
and this function is given as (1), respectively.

The mean value function (3) can be improved with this
learning style as given by:

m1(t) = a

⎛
⎜⎜⎝1− 1 +

ηeξt

α
ηeξt

α
+ e(α+ηeξt)t

⎞
⎟⎟⎠ (4)

The learning effects will be constant while ξ=0,
and the mean value function (4) will degenerate to (3)
flexibly.

Further, the staff removing an error will potentially
induce new errors or deal with other errors unconsciously,
and this will change the rate of potential errors, which
will cause additional variations in the cumulative function.
The rate of extra variations in the cumulative function
can be given as (2), as explained previously. Accordingly,
the mean value functions of the software error-detection
process can be improved with (3) as given by (5):

m2(t) = aH(t) (1 + r(t)) = a ·

⎛
⎜⎜⎝1− 1 +

ηeξt

α
ηeξt

α
+ e(α+ηeξt)t

⎞
⎟⎟⎠

×
(
1 +

(
e−νt · sin

(π
2
δt
)))

, (5)

When the fluctuating factor ν=∞ or the project char-
acteristic factor δ=0, the number of potential errors will
be a constant, and (5) will degenerate to (4).

Table 1
Data Set References

Label Reference Data Sets

[1] [26] Failure data of the space program

[2] Huang and The DS 1

Hung (2011)
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Figure 2. The concept of the integrated models.

As the learning effects can change over time, the
proposed model can provide more flexibility in regard to
the graphic mapping of the mean value function.

The parameters α, η, ξ, ν, δ, and a can be obtained
using either least squares estimation (LSE) or numerical
methods.

3.3 Model Verification

This study evaluates the effectiveness of the proposed mod-
els by using the data sets in [26] and Huang and Hung
(2010) (Table 1). This study investigates the effectiveness
of the proposed models by using the MSE , R2, and rela-
tive root mean square error (RRMSE) comparison criteria.
The equations as follows:

MSE =

n∑
i=1

(mi −m(ti))
2

n− k
(6)

RRMSE =

√
1
n

n∑
i=1

(mi −m(ti))2

1
n

n∑
i=1

(mi)
(7)

Least Squares Estimation (LSE):

minM2(a, ν, δ, α, η, ξ) =
n∑

i=1

(mi −m2(ti))
2

=
n∑

i=1

(
mi − a ·

(
1 + e−νt · Sin

(π
2
δt
))

·
(
1− 1 + E

E + F

))2

(8)

Note that

⎧⎪⎨
⎪⎩
E = ηeξt

α

F = e(αt+ηteξt)
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3.4 The Integrated Model of SRGM

Above of all, this study includes a sine function to construct
an integrated model of SRGM with time-varying learning
effects for considering variable potential errors and multiple
change-points. The operating process of this model is
shown in Fig. 2. This study estimates parameters for
testing/debugging data by the proposed model, when the
fluctuating factor ν=∞ or the project characteristic factor
δ=0, (13) will degenerate to (9) and (14) will degenerate
to (10), where the number of potential errors will be a
constant, judges the numbers and the time point of the
change-points with the trace of r(t), modifies parameters
for change-points, when the accelerative factor with time
of learning effect ξ=0, (9) and (10) will degenerate to (7)
where the learning effects will be a constant.

4. Results

This study includes three actual data sets to verify the
proposed integrated models. The results show good fitting
for the actual data sets and describe the software testing
process reasonably.

4.1 The Fitting Results for Data Set [1]

According to the proposed integrated models, the change-
points for the data sets are judged by the proposed sine
function, r(t) which is the rate of extra variation to poten-
tial errors. As the unstable testing environment and the
level of debugging skill will cause extra variations in po-
tential errors unconsciously during the initial testing pro-
cess, the sine function r(t) can describe this phenomenon
and estimate parameters αj , ηj , ξj for each phase using the
partial data between change-points, respectively, and then
can modify the parameters and change-points.

Figure 3 shows the r(t) curve and the predicted change-
points. Figure 4 shows the fitting results, and Table 2
provides the parameters for data set [1] with the proposed
model built with exponential learning effects.

Figure 3. The variations of r(t) with predicted change-
points for data set [1] using the exponential learning model.

Figure 4. Fitting results for data set [1] using the expo-
nential learning model.

Table 2
The Parameters for Data Set [1] with the Proposed Model

Parameters 1st Change- 2nd Change-

Point (θ1 =6) Point (θ2 =11)

a=19 α0 =0.32 α1 =0.35 α2 =0.29

ν=1.1 η0 =2.8 η1 =0.07 η2 =0.000001

δ=1 ξ0 =0 ξ1 =0.01 ξ2 =0

Figure 5. The variations of r(t) with predicted change-
points for data set [2] using the exponential learning model.

4.2 The Fitting Results for Data Set [2]

Figure 5 shows the r(t) curve and the predicted change-
points. The fitting results are shown in Fig. 6, and Table
3 gives the parameters for data set [2] with the proposed
model built with exponential learning effects.

4.3 Comparison of the Results

This paper compares its fitting results for data set [1]
with those of the models in published papers by using the
MSE and R2 comparison criteria (Table 4). The proposed
models are more concise and effective, and the exponen-
tial learning model is more suitable for data set [1] with
two change-points. The parameters show that the learn-
ing effects exhibit exponential growth from time 6 to 11;
otherwise, they remain constant.
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Figure 6. Fitting results for data set [2] using the exponential learning model.

Table 3
The Parameters for Data Set [2] with the Proposed Model

Parameters θ1 =8 θ2 =27 θ3 =43

a=465 α0 =0.02 α1 =0.02 α2 =0.02 α2 =0.02

ν=0.14 η0 =0.01 η1 =0.01 η2 =0.038 η2 =0.029

δ=0.06 ξ0 =0.19 ξ1 =0.054 ξ2 =0 ξ2 =0.0025

Table 4
Fitting Results Using the MSE and R2 Comparison Criteria for Data Set [1]

Criteria Goel and Yamada Ohba Yamada Huang Pham and Chiu The Proposed
Okumoto [27] (1983) [6] (1992) [7] Zhang [28] (2008) Model

MSE 2.685 6.593 3.437 1.946 2.428 4.122 3.010 1.380

R2 0.934 0.837 0.920 0.955 0.953 0.914 0.930 0.973

Table 5
Fitting Results Using the MSE and RRMSE

Comparison Criteria for Data Set [2]

Model MSE RRMSE

Huang and Hung (2011) 87.09 0.030

ISS with two change-points 92.56 0.030

Yamada delayed S-shaped 426.93 0.066
(DSS) model

Goel–Okumoto (G–O) model 102.39 0.032

Goel–Okumoto (G–O) model 94.44 0.030
(with two change-points)

The proposed model 87.94 0.029

This study compares its fitting results for data set
[2] with those of other models in published papers by
using the MSE and RRMSE comparison criteria
(Table 5). The proposed models are more concise and effec-
tive, and the exponential learning model is more suitable

for data set [2] with three change-points. The parameters
show the learning effects to be constant from week 27 to
43, and to otherwise exhibit exponential growth.

5. Conclusion

Recently, various SRGMs have been proposed to assess
software reliability. Some important issues in such mod-
els include the S-curve or exponential testing data, the
change-points in the process, estimation of the parameters,
variations in potential errors, and the learning effects oc-
curring in the testing process. However, the models which
were proposed in the past may be suitable only for a spe-
cific S-curve or exponential testing data, may determine
the change-points but not describe the change, and may
discuss the learning effects but not evaluate them, thus
narrowing the scope of applications. This study includes
three actual data sets to verify the proposed integrated
model, and the results show good fitting for the actual
data sets and describe the software testing process reason-
ably. The proposed integrated model describes the soft-
ware testing process accurately, which helps in regard to
managing the testing project effectively. Equation (3) can
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simultaneously describe both S-shaped and exponential-
shaped types of testing behaviour with constant learning
effects, and (4) illustrates software testing behaviour with
time-varying learning effects that help to effectively de-
termine the learning effects in the testing process. Equa-
tion (2) judges the umber and the time point of change-
points and illustrates the variations of the parameters on
the change-points that help to master the software testing
project. Equation (5) traces the change-points in the test-
ing project and explains both S-shaped and exponential-
shaped types of testing behaviour with time-varying learn-
ing effects by considering variable potential errors that help
staff become acquainted with the software testing environ-
ment. The proposed model not only provides good numer-
ical prediction performance for several different kinds of
data but also explains the testing/debugging behaviour of
testing staff, the learning effects of the testing project, and
the changes in the testing environment, all of which are
important considerations of software system testing and
management.
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