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Abstract

A protein interaction network is a graph whose vertices are the

protein’s amino acids and whose edges are the interactions between

them. Using a graph theory approach, we study the properties of

these networks. In a first time, we lead a topological description

of structural families to observe how proteins from the same family

have homogeneous topological properties. Second, we compare the

studied graphs to the general model of scale-free networks. In

particular, we are interested in the degree distribution and the mean

degree of vertices. The results show a correlation between these two

measures.
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1. Introduction

In recent years, graph-theoretic descriptions have been ap-
plied to describe and analyse a number of complex biolog-
ical systems. Such an approach is now applied to study
protein structures and in particular the network of interac-
tions between amino acids. The main interest is to inves-
tigate the usefulness of graph-theory measures to describe
the relationship between protein sequence, structure and
function by constructing graphs of protein structures.

In this study, we treat proteins as networks of inter-
acting amino acid pairs [1]. In particular, we consider the
subgraph induced by the set of amino acids participating
in the secondary structure also called secondary structure
elements (SSEs). We term this graph SSE interaction
network (SSE-IN). We carry out a study to describe the
SSE-INs according to a general model of interaction net-
works. We begin by describing the SSE-INs relying on
common graph theory metrics. Because proteins belonging
to the same family have homogeneous topological proper-
ties, we are interested in comparing this type of graphs to
the scale-free networks. Thus, we study the SSE-IN node
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degree distributions to deduce that those distributions are
specific and confirm relative works.

1.1 Amino Acid Interaction Networks

The 3D structure of a protein is represented by the coor-
dinates of its atoms. We consider the residues of proteins
to represent them. From files recorded in Protein Data
Bank (PDB) [2], we compute the distances between pair
of amino acids by considering that the Cα atom is their
centre.

We consider a contact map matrix which is a N ×N
0–1 matrix whose element (i, j) is one if there is a contact
between amino acids i and j and zero otherwise. A contact
is defined according to the distance between two residues,
when this distance is inferior to 7 Å [3], a contact exists
between these residues.

We construct a graph with N vertices (each vertex
corresponds to an amino acid) and the contact map matrix
as incidence matrix. It is called contact map graph. The
contact map graph is an abstract description of the protein
structure taking into account only the interactions between
the amino acids.

In this paper, we consider the subgraph induced by the
set of amino acids participating in secondary structures.
We call this graph secondary structure interaction network
(SSE-IN). Thus, the structure determining interactions are
those between amino acids belonging to the same SSE
on local level and between different SSEs on global level.
Figure 1 gives an example of a protein and its SSE-IN.

To generate a SSE-IN graph, we start from a PDB file
from which we extract specific data to build the graph. For
this purpose, we have developed a parser that is able to
build the set of nodes representing the protein amino acids
and the set of edges considered as the node interactions.
Once the graph is generated, it may be displayed in two-or
three-dimensional space. Towards this goal, we exploit the
GraphStream library [4] which allows the manipulation of
graphs.

2. A Topological Description

Through the results presented in this section, we want to
offer a graph theory interpretation of the protein structural
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Figure 1. A representation of the isolated catalytic domain
of diphtheria toxin (1DTP) SSE-IN. The nodes represent
the amino acids composing the secondary structure, they
participate in a-helices and b-sheets.

properties. Thus, when a protein belongs to a family
according to its structural properties, by analogy, the
protein SSE-IN also belongs to a specific topological family.
Therefore, the SSE-IN topological properties depend on
the protein structural family.

Here, we select some measures form graph theory to
characterize the SSE-INs as it is presented in [5].

2.1 Topological Metrics

The distance in a graph G=(V,E) between two vertices
u, v ∈V , denoted by d(u, v), is the length of the shortest
path connecting u and v. If there is no path between u and
v, we suppose that d(u, v) is undefined.

A graph diameter, D, is the longest shortest path
between any two vertices of a graph:

D = max{d(u, v) : u, v ∈ V }

The density, δ, is defined as the ratio between the
number of edges in a graph and the maximum number of
edges which it could have:

δ =
2m

n(n− 1)
∼ 2m

n2

The density of a graph is a number between 0 and 1.
When the density is close to one, the graph is called dense,
when it is close to zero, the graph is called sparse [6].

The clustering measures the local density of vertices
[7]. For each node v, the local clustering around its
neighbourhood is defined by the following way:

Cv =
1

2
kv(kv − 1)

The clustering coefficient is a ratio between the number
of edges and the maximum number of possible edges in
the vertex neighbourhood. If we extend the previous

definition to the entire graph, the clustering is given by the
expression:

CL =
1

n

∑
v∈V

Number of connected neighbour pairs

Cv

Nevertheless, this last definition is mainly local be-
cause for each node, the clustering involves only the node
neighbourhood.

The global clustering was studied by Newman et al.
[8] and can be measured by the following formula:

CG =
3×Number of triangles in the graph

Number of connected triplets of vertices

A triangle is formed by three vertices which are all
connected and a triplet is constituted by three nodes and
two edges. The global clustering coefficient CG is the mean
probability that two vertices that are neighbours of the
same other vertex will themselves be neighbours.

2.2 Experimental Results

To study the SSE-INs, we need to select them according to
their SSE arrangements, we consider only proteins which
have one domain. We work with proteins which belong
to the CATH v3.1.0 topology level or the SCOP v1.73
fold level. For each of the two classifications, we study
three families as shown in Table 1. Those six families
have been chosen because of their huge protein number.
Thus, each family provides a broad sample guarantying
more general results and avoiding fluctuations. Moreover,
these six families contain proteins of very different sizes,
varying from several dozens to several thousands amino
acids in SSE.

Table 1
Families Studied to Put in Evidence the Parallel between

Structural and Topological Properties

Name Type Class Proteins

Rossmann fold CATH α β 2,576

TIM Barrel CATH α β 1,051

Lysozyme CATH Mainly α 871

Globin-like SCOP All α 733

TIM β/α-barrel SCOP α/β 896

Lysozyme-like SCOP α+β 819

The results, see (Table 2, column D), show very close
diameters between the families TIM Barrel and TIM
β/α-barrel and also between the families Lysozyme and
Lysozyme-like. It is correlated to the family compositions.
Indeed, among these pair of families, one can observe
that they contain almost the same proteins. In other
words, Lysozyme topology in CATH is the equivalent of
Lysozyme-like fold level in SCOP.
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Table 2
Families Studied to Describe the SSE-INs according to

Their Structural Families

Name D δ CL CG

Rossmann fold 18.84 0.033 0.63 0.56

TIM Barrel 19.83 0.030 0.64 0.57

Lysozyme 12.81 0.038 0.65 0.58

Globin-like 15.65 0.034 0.63 0.57

TIM β/α-barrel 20.09 0.029 0.64 0.57

Lysozyme-like 12.85 0.042 0.66 0.58

We observe clearly that the topological properties depend on the

structural family. Indeed, the topological description is different

from a family to another.

As the density is concerned, we observe (column δ)
that the families TIM Barrel and TIM β/α-barrel have
the minimum density. It has an impact on the SSE-IN
topology. Indeed, as the density is low, the network is less
connected and, therefore, the diameter is higher.

The local clustering CL measures the fraction of pairs
of a vertex’s neighbours and the global clustering CG gives
the probability that among three vertices at least two are
connected. The results presented (column CL and CG)
show that the clustering coefficients are close for different
families and cannot be correlated to density values. Conse-
quently, the neighbour density remains independent of the
previously studied properties.

2.3 A Topological Space

Until now, we have proposed an alternative means to
describe a protein structural family when proteins are
represented as SSE-INs. In particular, we have enumerated
some topological properties, like diameter and density,
which allow discriminating two distinct families, whereas
others, like clustering coefficients, are general properties of
all SSE-IN. Consequently, we except that proteins which
have similar structural properties or biological functions
will also have similar SSE-IN properties. In this way, our
model allows us to draw a parallel between biology and
graph theory.

In [5], we illustrate this parallel by building a topo-
logical space where proteins are described by their SSE-IN
topologies. We except that proteins from a same structural
family have SSE-INs which are grouped in this topological
space. Thus, we build a 3D topological space whose di-
mensions are the topological metrics enough discriminant
between SSE-INs belonging to different families.

From a dataset composed of 10 families in SCOP v1.73
classification, we consider a SSE-IN as a dot in our 3D
topological space, see Fig. 2. The x axis represents the
SSE-IN size, denoted N , the y axis represents the densities,
denotedG, and the z axis represents the diameters, denoted
D. The plots present only a sample of our results. It
appears clearly that proteins belonging to the same family
are grouped.

Figure 2. A 3D topological space. The x axis represents
the SSE-IN size, y the density and z the diameters. The
families are identified by their SCOP id in the v1.73
classification.

Thus, our topological space provides a means to dis-
criminate structural families when proteins are represented
by SSE-INs. Therefore, the parallel between structural
and topological properties can be illustrated through the
topological space we propose.

3. Comparison with the Scale-Free Network

In the previous section, we have shown that the structural
properties of proteins can be translated into a topological
space described by discriminant metrics. Then, we con-
tinue to study the parallel between structural and topo-
logical properties by comparing the SSE-INs to a general
model of interaction networks.

3.1 The Scale-Free Model

The most important property of scale-free systems is their
invariance to changes in scale. The term scale-free refers
to a system defined by a functional form f(x) that remains
unchanged within a multiplicative factor under rescaling of
the independent variable x. Indeed, this means power-law
forms, as these are the only solutions to f(an)= b f(n),
where n is the number of vertices [9]. The scale-invariance
property means that any part of the scale-free network is
stochastically similar to the whole network and parameters
are assumed to be independent of the system size [10].

Definition 1. The degree of a vertex u, ku, is the
number of edges incident to u. The mean degree of a
graph, denoted z, is defined as follows:

z =
1

n

∑
u∈V

ku =
2m

n

If nk is the number of vertices having the degree k, we
define pk as the fraction of vertices that have degree k in
the network:

pk =
nk

n
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Figure 3. Examples of Poisson distributions. The curves

are centered around the value of z when pk =
zke−z

k! with
z=1, 4, and 10.

The degree distribution is an important characteristic
of interaction networks because it affects their properties
and behaviour [11]. The probability pk that a randomly
chosen vertex is connected to exactly k others is [12]:

pk =

(
n

k

)
pk(1− p)n−k

When n tends to infinity, this becomes:

pk = lim
n→∞

nk

k!
(

p

1− p
)k(1− p)n � zke−z

k!

which is a Poisson distribution. As we see in Fig. 3, Poisson
distributions have different behaviour for different mean
degree z. Each distribution has a clear peak close to k= z,
followed by a tail that decays as 1/k! which is considerably
quicker than any exponential.

The degree distribution can also be expressed via the
cumulative degree function [13]:

Pk =
∞∑

k′=k

pk′ (1)

which is the probability for a node to have a degree
greater or equal to k.

By plotting the cumulative degree function one can
observe how its tail evolves, following a power law or an
exponential distribution.

The power law distribution is defined as following [9]:

Pk ∼
∞∑

k′=k

k′−α ∼ k−(α−1) (2)

and the exponential distribution is defined by the next
formula:

Pk ∼
∞∑

k′=k

e−k′/α ∼ e−k/α (3)

Figure 4. Degree distribution for each of the three models
described by Amaral [15]. The red line follows a power
law, a function with a relatively “fat tail” as for scale-
free networks. The green line corresponds to truncated
scale-free networks because it describes a power law regime
followed by a sharp cut-off. The black curve has a fast
decaying tail, typically exponential, and corresponds to
single-scale networks.

Between these two distributions, there is a mixture
of them where the distribution has a power law regime
followed by a by a sharp cut-off, with an exponential decay
of the tail, expressed by the next formula:

Pk ∼
∞∑

k′=k

k′−αe−k′/α ∼ k−(α−1)e−k/α (4)

Like a power law distribution, it decreases polynomi-
ally, so that the number of vertices with weak degree is
important while a reduced proportion of vertices having
high degree exists. The last are called “hubs,” that is sites
with large connectivity through the network, see Fig. 4.

The scale-free model depends mainly on the kind of
degree distribution, thus a network is defined as a scale-free
if:

– The cumulative degree distribution is a power law
distribution Pk ∼ k−α over a part of its range, see (2).

– The distribution exponent satisfies: 2<α≤ 3 [14].

Amaral et al. [15] have studied networks whose cu-
mulative degree distribution shape lets appear three kinds
of networks, see Fig. 4. First, scale-free networks whose
distribution decays as a power law with an exponent α
satisfying bounds seen above (2). Second, (3), single-scale
networks whose degree distribution decays fast like an ex-
ponential. Third, (4), broad-scale or truncated scale-free
networks whose degree distribution has a power law regime
followed by a sharp cut-off.

3.2 Experimental Results

As we explained previously, to study the SSE-INs, we
build a dataset composed of proteins grouped according to
their structural families. Here, to compare SSE-INs to the
scale-free model, we rely on the SCOP v1.73 classification
and notably the fold family level to select a total of 18,296
proteins, see Table 3. Also, a protein belongs to a SCOP
fold level if all its domains are the same.
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Table 3
Structural Families Studied

Class Number of Number of
Families Proteins

All α 12 2,970

All β 17 6,372

α/β 18 5,197

α+β 16 3,757

For each class, we select template families according to their

protein numbers. By this way, a family is described by enough

proteins to provide a general topological description. The total

number of studied proteins is 18,296. We have worked with the

SCOP 1.73 classification.

Figure 5. Cumulative degree distribution for 1COY
SSE-IN. This distribution is approximated by the func-
tion Pk (6), and in the same time it follows a power law
regime (5).

3.3 General Behaviour

To compute the cumulative degree distribution of protein
SSE-INs (denoted Pk = a k−b exp−k/c, see (4), we have
divided our dataset into two parts whose first one is com-
posed of 20% of the total studied proteins. Then, we fit our
specific sub dataset relying on a numerical approximation
using the method of least squares. Once, we have obtained
the coefficients from our sub dataset, we apply them for
the others studied proteins. A sample of our results is
presented in Fig. 5. We can remark that the cumulative
distributions describe a power law regime followed by a
sharp cut-off. The power law function is expressed as
following:

p(k) = 213.413 k−α, where α = 3.2± 0.6 (5)

while the distribution is approximated by the next function:

Pk = 1.48347 k0.962515 exp−k/2.12615 (6)

We observe the same result for all studied proteins,
that is a cumulative degree distribution approximated by
the function Pk. Here, we discuss about characteristics or
conditions which involve such a behaviour.

Figure 6. Degree and cumulative distribution for 1COY
SSE-IN. Top, the curve follows a Poisson distribution
whose peak equals to the mean degree z. Bottom, the
curve decreases quickly for degrees superior to z.

First, we are interested in the degree distribution and
mainly its shape, see Fig. 6. We can see that degree distri-
bution follows a Poisson distribution whose peak is reached
for a degree near z. This result provides precision about
how the vertices are connected within SSE-IN. It implies
that the degree of the vertices is homogeneous. In other
words, a major part of them has a connectivity enough
close to the mean degree. Consequently, the cumulative
distribution depends on the mean degree value which acts
as a threshold beyond which it decreases as an exponential
as it is approximated via Pk.

Second, we study how the mean degree evolves through
all SSE-IN. Its distribution, see Fig. 7, indicates a relative
weak variation according to the size. Even if two protein
SSE-IN have size ratio around 10 or 100, their mean degree
ratio is estimated to 1.05 or 1.15 and remains in the same
scale order.

To illustrate the mean degree homogeneity we choose
two proteins, namely 1SE9 and 1AON with sizes respec-
tively 50 and 4,998. Their size ratio is approximately
100. Even if the mean degrees are slightly different, the
distributions are very similar (see Fig. 8).

To recapitulate, we show that the mean degree values
constitute a threshold for protein SSE-IN cumulative de-
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Figure 7. Mean degree distribution according to protein
SSE-IN size. It evolves with values enough close, between
5 and 8.

Figure 8. Cumulative degree distribution of 1SE9 and
1AON SSE-IN whose size equals 50 and 4,988. Despite
their important size difference, their mean degree stay close
and worth, respectively, 6.6 and 7.5.

gree distribution. For degrees lower than the mean degree,
it decreases slowly and after this threshold its decrease is
fast compared to an exponential one, as shown Figs 5, 6,
and 8.

Consequently, we find a way to approximate all pro-
teins SSE-IN cumulative degree distribution by the func-

Figure 9. SSE-IN of 1DTP protein. The edges connecting
different SSE are green.

tion Pk which can be adjusted. This function describes a
power law regime followed by a sharp cut-off which arises
for degree values exceeding the mean degree. Proteins
SSE-IN are so truncated scale-free networks. Thus, we find
a way to approximate all protein SSE-INs cumulative de-
gree distribution by the function Pk which can be adjusted.
This result is also confirmed by previous studies [16–18].

3.4 Mean Degree Evolution

As the mean degree plays the role of a threshold beyond
which the cumulative degree distribution decreases expo-
nentially, it is interesting to study its evolution with the
size of the network. Figure 7 shows that the mean degree
increases very slightly with the size of the network. Even
for networks with size ratio of 100, the mean degree ratio
is only 1.15 (as an example, see Fig. 8).

Whatever the size of the network is, we observe that
the mean degree is always between 5 and 8. This mean de-
gree interval is a common property characterizing all SSE-
IN. To explain this property, let us consider the structure
of our networks. They are composed of densely connected
subgraphs corresponding to SSEs (see Fig. 9). The num-
ber of edges connecting different subgraphs is relatively
small, but these edges are the most important, because
they correspond to interactions determining the tertiary
structure.

We start by computing the mean degree in each SSE
subgraph. The results are shown in Fig. 10. We can
see that the mean degree evolution at microscopic level
is almost the same as at macroscopic level (compare to
Fig. 7). Independently of the SSE size and type, the mean
degree of each SSE subgraph, zSSE is always bounded:

zmin < zSSE < zmax (7)

when the size of the network is more than 10. In the
general case zmin =5 and zmax =8, but when we consider a
specific SSE size and type, finer bounds can be found (see
Fig. 10).

Now let us consider a whole protein. Suppose that
it contains s SSEs and let the element i has ni vertices
and mi edges, i=1, . . . , s. Then, the total number of
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Figure 10. SSE subgraphs size distribution and mean degree as a function of the size. The mean degree evolves between
3 and 5.

Figure 11. Ratio of inter-SSE edges (r) as a function of the network size for the four classes studied. It is bounded and never
exceed 20% of the total edge numbers.

vertices is n=
∑s

i=1 ni and the total number of edges is
m=

∑s
i=1 mi +minter, where minter is the number of edges

connecting vertices from different SSEs. Let r=minter/m
be the ratio of inter-SSE edges. Then:

m

n
=

s∑
i=1

mi +minter

s∑
i=1

ni

=

s∑
i=1

mi

s∑
i=1

ni

+ r
m

n
(8)

and hence for the mean degree z we have:

z =
2m

n
=

2

1− r

s∑
i=1

mi∑s
i=1 ni

(9)

On the other hand, from (7) it follows that:

zmin

2
ni < mi <

zmax

2
ni, i = 1, . . . , s (10)
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By summing up the last equation we obtain:

zmin

2
<

s∑
i=1

mi

s∑
i=1

ni

<
zmax

2
(11)

which together with (9) gives:

zmin

1− r
< z <

zmax

1− r
(12)

The last equation gives finer bounds on the mean
degree. It shows that the bounds on z depend not only
on the bounds on zSSE, but also on the ratio of inter-SSE
edges. A higher proportion of inter-SSE edges shifts up
the bounds. Proteins with bigger size have more SSEs and
hence more links between different SSEs. This explains the
increase of the mean degree with the size of the networks.
Figure 11 shows that the number of inter-SSE edges is quite
variable, but it never exceeds 20%. It is the consequence
of the excluded volume effect, because the number of
residues that can physically reside within a given radius is
limited. This last property explains why the mean degree
is homogeneous.

4. Conclusion

In this paper, we consider proteins as interaction network
of amino acids. We study some of the properties of
these networks. It appears that specific properties, like
diameter and density, allow discriminating two distinct
families, whereas others are common to all SSE-INs. Thus,
proteins whose structural properties are similar will also
have similar SSE-IN properties. In this way, our model
allows us to draw a parallel between biology and graph
theory.

We compare the amino acid interaction network to the
model of scale-free networks. We show that we can approx-
imate all protein SSE-IN cumulative degree distributions
by a unique function. This function describes a power law
regime followed by a sharp cut-off which arises for degree
values exceeding the mean degree. Protein SSE-INs are so
truncated scale-free networks. This node distribution im-
plies that there exist amino acids whose degree is marginal
(greater than the mean degree).

The characterization we propose constitutes a first
step of a new approach to the protein folding problem.
The properties identified here, but also other properties we
studied [19], can give us an insight on the folding process.
They can be used to guide a folding simulation in the
topological pathway from unfolded to folded state.
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