Microarray Missing Data Imputation Using Regression

Tuncay Bayrak and Hasan Ogul

Keywords

Gene expression prediction, Missing value imputation, Regression, Relevance vector machine

Abstract

Having missing values due to several experimental conditions is a common problem in analyzing the results of microarray experiments. Although many imputation methods exist, comparative studies based on regression based models are very limited. Particularly, Relevance Vector Machine (RVM), a recent regression method shown to be effective in various domains, has not been considered so far for missing value imputation in microarray data. In this study, we present a comparative study between regression based models, including linear regression, k-nearest neighbor regression and RVM that uses data obtained from breast, colon and prostate cancer tissues through the microarray technology. The leave-one-out (or Jackknife) procedure is applied for the validation. To measure the performance of the model we used Spearman correlation coefficient (CC). The results reveal that RVM with a Gaussian kernel outperforms other regression models in some cases.

Important Links:



Go Back