High-Order FDTD Subcells using MOR Technique

H.-H. Su and C.-W. Kuo (Taiwan)

Keywords

finite difference time domain (FDTD), model order reduction (MOR), subcell. , 1/ 2 1 3/ 2. 1/ 2 3/ 2. 1/ 2 | ( | | 3 y i j z i j z i j dH K E E dt x µ + + + − += − ∆ )

Abstract

1/ 2, 1/ 2 1/ 2, 1 1/ 2, 2 2, 1/ 2 1, 1/ 21 1/ 2, 1 3/ 2, 1 1/ 2, 2 3/ 2, 22 2, 1/ 2 2, 3/ 2 1, 1/ 2 1, 3/ 2 1 2 | | | | | ( ) 3 | | | | ( 6 | | | | ) (1 z i j x i j x i j y i j y i j x i j x i j x i j x i j y i j y i j y i j y i j dE dt H H H HK y x H H H HK y H H H H x K K ε + + + − + + + + − + − − + − − + + + − + + − − − + = − − + ∆ ∆ + − − + ∆ + − + ∆ + − − + 1/ 2, 1/ 2, 1| | )( x i j x i jH H y + + +− ∆ 1, 1/ 2 , 1/ 2| | ) y i j y i jH H x + + +− + ∆ (1) In this paper, we propose a hybrid method for implementing the finite difference time domain (FDTD) algorithm with subcells. The subcells are introduced to account for structures with much finer details compared to other features. A macromodel using the M(2,4) FDTD algorithm instead of the conventional S(2,2) subcell is proposed. Order of the macromodel is then reduced with the model order reduction technique. Subcells implemented with the proposed method can be integrated with Yee’s FDTD method seamlessly.

Important Links:



Go Back