J. Xiao (Australia)
: Match, Path Graph, Scheduling, Spatial join processing, Scheduling.
In spatial join processing, a common method to minimize the I/O cost is to partition the spatial objects into clusters. An important operation following this object clustering is to schedule the processing of the clusters such that the number of times the same objects to be fetched into memory can be minimized. [1] proposed a cluster-sequencing method to minimize the I/O cost in spatial join processing. The key issue behind that method is how to produce a better sequence of clusters to guide the scheduling. This paper proposes a new efficient algorithm that gives us a better sequence than the original algorithm does in the sense that over 16% of the fetching time used for fetching those overlapping objects of clusters can be saved. Simulations have been conducted to demonstrate the saving of I/O cost in spatial join by using the new sequencing method.
Important Links:
Go Back