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Abstract

In this paper, to improve the lateral control performance of au-

tonomous land vehicles (ALVs) under different longitudinal veloci-

ties, a novel learning-based lateral control method based on the dual

heuristic programming (DHP) algorithm is presented. A new way to

calculate the lateral control errors based on the geometric relation-

ship between the vehicle and the path is utilized. To minimize the

lateral control errors of ALV, the lateral control problem is modelled

as a Markov decision problem (MDP). To approximate the optimal

control policy of the MDP, a learning controller based on the DHP

algorithm is designed, where the critic is used to approximate the

derivative of the value function and the actor is utilized to improve

the control policy based on the output of the critic. The inputs

of the critic and actor are comprised of the lateral control error

and the vehicle’s longitudinal velocity, which makes the proposed

method be effectively adaptive to different longitudinal velocities.

Simulation results demonstrate the proposed lateral control scheme

has advantages over widely used lateral control methods, such as

the pure pursuit, PD control and Stanley methods.
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1. Introduction

Autonomous land vehicles (ALVs) have attracted enor-
mous attention in the past decades since the key tech-
nologies of ALVs, such as intelligent sensing, planning and
control [1]–[5], can be widely applied in intelligent trans-
portation systems, driver assistance systems, military tasks
and other fields. Motion control, which mainly fulfils the
tracking task of driving the vehicle to achieve the desired
path and the desired speed, is an important part among
the major technologies in ALVs. Challenges still exist in
designing a high-precision motion controller under different
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longitudinal velocities. When designing a motion controller
of ALVs, the control problem is commonly decoupled into
the lateral control problem and the longitudinal control
problem, which play important roles in guaranteeing the
ALVs’ stability and safety.

Lateral control methods can be classified into two
major categories: geometric methods and model-based
methods. In geometric methods, control rules are usually
designed by studying the geometric relationship between
the vehicle and the reference path. Geometric methods
mainly comprise the pure pursuit, the vector pursuit and
the Stanley method [1], [6]–[8]. The pure pursuit method
and its variations have been widely studied and employed
due to their easy implementation and robustness to larger
errors. In the pure pursuit method and its variations, a
look-ahead distance to measure error ahead of the vehicle
is often utilized. In [1] and [6], fixed look-ahead distances
were used and in [2] and [9], look-ahead distances were
dynamically tuned with the vehicle’s speeds. The vector
pursuit method makes use of the screw theory and is similar
to the pure pursuit method [7]. The Stanley method
was presented in [8] and successfully used in the DARPA
Grand Challenge [10]. The Stanley controller is a non-
linear feedback function of the cross track error. However,
some issues still exist in these geometric methods. For
instance, in the pure pursuit method and its variations, the
look-ahead distance is usually tuned empirically to adapt
different speeds. Moreover, the cutting corner problem
easily occurs at a high speed for the reason that the look-
ahead distance also increases with the vehicle’s velocities.
The Stanley method is more suitable for lower speeds and
may lead to overshoots. In addition, the desired tracking
path needs to have continuous curvatures and there is also
an empirical parameter to be adjusted for precise control.

Model-based lateral control methods use kinematic
or dynamics models of the vehicle to design lateral con-
trollers. In [11], a lateral control approach was proposed
for Ackerman-like vehicles. By empirically adjusting the
look-ahead distance, the control strategy can adapt to both
low and high driving speeds. In [8], a simple kinematic ve-
hicle model was used to design the lateral controller, which
can track a path precisely under normal driving scenarios.
In addition, there are some other lateral control methods

539



such as proportion-integral-derivative (PID) control [4],
[12], fuzzy control [13], [14], sliding-mode control [15], [16]
and model predictive control [17], [18]. Similar to geomet-
ric methods, most of aforementioned methods depend on
handcrafted parameters to be adaptive for various driving
speeds, such as in [8], [11], [19]–[20]. Therefore, design-
ing an adaptive controller for various driving speeds is
significant for the lateral control of an autonomous vehicle.

In recent years, many researchers focus on the design
of lateral controllers based on learning methods for ALV.
Some supervised learning methods were also used for solv-
ing the lateral control problem and the longitudinal prob-
lem [21], [22], whereas supervised learning requires teacher
signals which to some extent limits its further applications
on the lateral control of ALV. Reinforcement learning (RL)
[23]–[26] is a class of machine learning methods for solv-
ing Markov decision problems (MDPs) without utilizing
teacher signals. In recent years, the research works on RL
have been integrated with the approximate dynamic pro-
gramming (ADP) community [27]–[29], which is to solve
MDPs with large or continuous state and action spaces.
RL and ADP have been shown to be very effective tech-
niques to solve optimal control problems with unknown or
partly known model information. There have been some
works about employing RL and ADP to design lateral con-
trollers for ALVs [30]–[33]. Oh et al. presented a dynamic
control approach based on adaptive heuristic critic (AHC)
[30] which can work with high driving speeds and large
curvature paths. In [31], neural fitted Q (NFQ) iteration
was used to design a lateral controller with a discrete and
empirical action space which can make a toy car track the
desired road. In most works mentioned above, the cost
function was directly approximated. However, a potential
problem exists that the approximated cost function is not
smooth because the derivative of the cost function is not
approximated [34].

Dual heuristic programming (DHP), as a classical type
of ADP methods, has attracted much attention in the last
decades [35]. The DHP algorithm utilizes a critic network
to approximate the derivative of the cost function, which
has been shown to be more beneficial to learn an optimal
or near-optimal control policy than approximating the cost
function itself [34]. In this paper, a DHP-based lateral
control method for ALV is proposed. First, the lateral
posture error as the input of the DHP learning algorithm
is calculated based on the geometric relationship between
the vehicle and the desired path. Second, an MDP model,
including the definition of the state space, action space and
the cost function for the path tracking task, is established.
Third, in DHP, a critic module is used to approximate the
derivative of the value function and an actor module is
utilized to obtain the near-optimal lateral control policy
based on the outputs from the critic. Simulation results
demonstrate the proposed scheme can well adapt to various
vehicle velocities and has advantages over other popular
methods, such as the pure pursuit, proportion-derivative
(PD) control and Stanley methods.

The main contributions in this paper include: (i) a
novel learning-based lateral control method based on DHP
is presented to improve the lateral control performance

Figure 1. The kinematic model of ALVs and the local
reference path in the local reference frame.

for ALVs under different longitudinal velocities; (ii) the
performance evaluation and comparisons with other popu-
lar lateral control methods illustrate the effectiveness and
advantages of the proposed method.

The rest of this paper is organized as follows. In
Section 2, the vehicle kinematic model, geometric model of
the local reference path and lateral posture error model are
given. Section 3 establishes an MDP model and designs
a lateral controller based on the DHP algorithm. In
Section 4, simulation results are provided to demonstrate
the validity of the proposed scheme. Section 5 draws
conclusions.

2. Problem Formulation and Lateral Error
Modelling

For an ALV, the local reference path is always determined
by the perception and decision-making system in the lo-
cal reference frame. Assume that path planning is imple-
mented at time k0, and the local reference frame is the
current vehicle-body reference frame. Its origin is the cen-
tre of the vehicle’s rear wheels. The positive direction of
x-axis is the forward direction of the vehicle, and the posi-
tive direction of y-axis is towards to the left of the positive
direction of x. Define Δk as the planning time, and then
at time (k0 +Δk) the position and heading angle have
changed compared with the posture at time k0. Figure 1
shows the kinematic model of ALV and the local reference
path in the local reference frame at time (k0 +Δk). In
Fig. 1, (xL, yL) indicates the coordinates of the vehicle in
the local reference frame, θL denotes the heading angle,
the black dots on the reference path denote the planned
points, (cx, xy) stands for the point on the reference path
nearest to the vehicle, and cθ is the angle between the path
tangent at (cx, cy) and the x-axis. The kinematic model of
the vehicle in the local reference frame is:

˙qL = [ẋL ẏL θ̇L]
T = [v cos θL v sin θL v tan δ/L]T (1)

To obtain a continuous and smooth reference path
model, the quadratic polynomial fitting method is
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employed and the geometric model of the reference path is
given as follows:⎧⎪⎨

⎪⎩
yp(k) = a2x

2
p(k) + a1xp(k) + a0

θp(k) = arctan[2a2xp(k) + a1]

(2)

where (xp(k), yp(k)) is the coordinates of the point on
the reference path and θp(k) is the path tangent at
(xp(k), yp(k)). a0, a1 and a2 are the coefficients of the
constant term, the simple term and the quadratic term,
respectively. Define the lateral control error as:

qe =

⎡
⎢⎢⎢⎣
ex

ey

eθ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cos θL sin θL 0

− sin θL cos θL 0

0 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
cx − xL

cy − yL

cθ − θL

⎤
⎥⎥⎥⎦ (3)

where (cx, cy) denotes the point on the reference path
nearest to the vehicle, and cθ is the angle between the path
tangent at (cx, cy) and the x-axis. Thus we have:

(cx, cy) = arg min
(xp,yp)∈P

{√
(xp − xL)2 + (yp − yL)2

}
(4)

where P is the set of all points on the reference path.
Equation (4) indicates that the vector (cx − xL, cy − yL)
and the path tangent at (cx, cy) are orthogonal. Then we
can get:

(cx − xL) + (cy − yL)
dcy
dcx

= 0 (5)

Combining with (2), (5) can be rewritten as:

(cx − xL) + (a2c
2
x + a1cx + a0 − yL)(2a2cx + a1)

= 2a2c
3
x + 3a1a2c

2
x + (a21 + 2a2(a0 − yL) + 1)cx

+ a1(a0 − yL)− xL = 0 (6)

The solution of the cubic equation (6) is obtained and
we set: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cx = f1(xL, yL)

cy = a2c
2
x + a1cx + a0 = f2(xL, yL)

cθ = arctan[2a2cx + a1] = f3(xL, yL)

(7)

where the functions f1, f2, f3 can be determined via (2)
and (6).

Then the lateral error model is expressed as follows:

q̇e =

⎡
⎢⎢⎢⎣
ėx

ėy

ėθ

⎤
⎥⎥⎥⎦ = θ̇L

⎡
⎢⎢⎢⎣
− sin θL cos θL 0

− cos θL − sin θL 0

0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
cx − xL

cy − yL

cθ − θL

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

cos θL sin θL 0

− sin θL cos θL 0

0 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
ċx − ẋL

ċy − ẏL

ċθ − θ̇L

⎤
⎥⎥⎥⎦ (8)

Substituting (1) and (3) into (8), yielding:

q̇e=

⎡
⎢⎢⎢⎣
ėx

ėy

ėθ

⎤
⎥⎥⎥⎦ =

v tan δ

L

⎡
⎢⎢⎢⎣

ey

−ex

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣
cos θLċx + sin θLċy − v

− sin θLċx + cos θLċy

ċθ − v tan δ
L

⎤
⎥⎥⎥⎦

(9)

where ċx, ċy and ċθ can be calculated by (1) and (7), as
follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ċx = ∂f1
∂xL

v cos θL + ∂f1
∂yL

v sin θL

ċy = ∂f2
∂xL

v cos θL + ∂f2
∂yL

v sin θL

ċθ = ∂f3
∂xL

v cos θL + ∂f3
∂yL

v sin θL

(10)

Substituting (10) into (9), the lateral error model can
be expressed by:

q̇e =

⎡
⎢⎢⎢⎣
ėx

ėy

ėθ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

tan δ
L ey + g1(xL, yL, θL)− 1

− tan δ
L ex + g2(xL, yL, θL)

− tan δ
L + g3(xL, yL, θL)

⎤
⎥⎥⎥⎥⎥⎦v (11)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(xL, yL, θL) =
∂f1
∂xL

cos2 θL

+ 1
2

∂f1
∂yL

sin 2θL + 1
2

∂f2
∂xL

sin 2θL + ∂f2
∂yL

sin2 θL

g2(xL, yL, θL) = − 1
2

∂f1
∂xL

sin 2θL − ∂f1
∂yL

sin2 θL

+ ∂f2
∂xL

cos2 θL + 1
2

∂f2
∂yL

sin 2θL

g3(xL, yL, θL) =
∂f3
∂xL

cos θL + ∂f3
∂yL

sin θL

(12)

The motion control of the autonomous vehicle is always
decoupled into two parts [6], [8]: longitudinal control and
lateral control. In this paper, only the lateral control
is considered based on the assumption that the vehicle
speed was invariable during each learning episode. We
also assume the speed of the autonomous vehicle can be
changed randomly among different learning episodes so as
to make the learned control policy suitable for different
reference paths under various speeds.

3. Design of the DHP-based Lateral Controller

In this section, an MDP model for the lateral control of an
ALV is first established, which is the basis for employing
the DHP algorithm. Then the procedures of designing a
DHP-based lateral controller are presented.

3.1 MDP Model for the Lateral Control of an ALV

The DHP algorithm can be utilized to solve an optimal
control problem when the control problem is modelled as
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an MDP. In this section, the details about how to establish
an MDP model for the lateral control of an ALV are
introduced.

An MDP model is consisted of a quadruple {S,U, f, r},
where S is the state space, U is the action space,
f : S×U �→X is the state transition function, and
r : X ×U ×X �→R is the reward function.

To obtain smaller lateral control error qe for different
reference paths and vehicle speeds, the state space S is
chosen as [qe, v]

T , where v is the vehicle speed.

Define the action u as tan δ
L . Then for a constant

longitudinal velocity, combining with (11), the following
state transition model is obtained:

s(k + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ex(k)

ey(k)

eθ(k)

v(k)

⎤
⎥⎥⎥⎥⎥⎥⎦
+ Tsv(k)

⎡
⎢⎢⎢⎢⎢⎢⎣

g1(k)− 1

g2(k)

g3(k)

0

⎤
⎥⎥⎥⎥⎥⎥⎦

+Tsv(k)

⎡
⎢⎢⎢⎢⎢⎢⎣

ey(k)

−ex(k)

−1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
u(k) (13)

where Ts is the interval and gi(k) denotes gi(xL(k), yL(k),
θL(k)) with i=1, 2, 3.

As the control objective to control the vehicle to track
the reference path as closely as possible, the reward func-
tion is set to be:

r(s(k)) = Q1e
2
x(k) +Q2e

2
y(k) +Q3e

2
θ(k) (14)

where Q1, Q2 and Q3 are positive constants.

3.2 Lateral Controller Design Based on DHP

After establishing the MDP model, the DHP algorithm is
employed to design a lateral controller. The cost function
is defined as:

V (s(k)) =
∞∑
k=0

r(s(k)) (15)

where r(s(k)) is the reward function defined in (14). Ac-
cording to the Bellman’s optimality principle, the optimal
cost function V ∗(s(k)) satisfies the following Hamilton–
Jacobi–Bellman (HJB) equation:

V ∗(s(k)) = min
u(k)

{r(s(k)) + V ∗(s(k + 1))} (16)

The optimal control u∗(k) satisfies:

u∗(k) = argmin
u(k)

{r(s(k)) + V ∗(s(k + 1))} (17)

According to (17), the optimal control u∗(k) should
satisfy the first-order necessary condition as follows:

∂(r(s(k))+V ∗(s(k + 1)))

∂u∗(k)
=

{
∂s(k + 1)

∂u∗(k)

}T
∂V ∗(s(k + 1))

∂s(k + 1)
=0

(18)

Let λ∗(s(k))= ∂V ∗(s(k))/∂s(k), we have:

λ∗(s(k)) =
∂(r(s(k)) + V ∗(s(k + 1)))

∂s(k)

=
∂r(s(k))

∂s(k)
+

{
∂s(k + 1)

∂s(k)

}T
∂V ∗(s(k + 1))

∂s(k + 1)

+

{
∂u∗(k)
∂s(k)

}{
∂s(k + 1)

∂u∗(k)

}T
∂V ∗(s(k + 1))

∂s(k + 1)

(19)

Substituting (18) into (19), yielding:

λ∗(s(k)) =
∂r(s(k))

∂s(k)
+

{
∂s(k + 1)

∂s(k)

}T

λ∗(s(k + 1)) (20)

Figure 2 shows the architecture of the DHP-based
lateral control system. The actor is to generate suitable
control u. The critic is to evaluate the control performance
under current control signals. In this paper, Critic #1
has the same structure and parameters as Critic #2 and
the error model is defined in (13). The critic and actor
modules are designed with three-layer back propagation
(BP) neural networks.

3.2.1 The Critic

The task of the critic network is to approximate the deriva-
tive of the cost function defined in (19). The structure of
the critic network is given as:

λ̂(s(k)) = wT
c σ(ν

T
c s(k)) (21)

where νc denotes the weight from the input layer to the
hidden layer, wc denotes the weight from the hidden layer
to the output layer and σ(·) is the sigmoid function.

According to (20), the temporal difference (TD) error
is defined as:

δTD(k) =λ̂(s(k))−
{
∂r(s(k))

∂s(k)
+

{
∂ŝ(k + 1)

∂s(k)

}T

λ̂(ŝ(k + 1))

}

(22)

where ∂ŝ(k + 1)/∂s(k) can be calculated via (13).
Then the weight update rules for the critic network are

given by:

w
[i+1]
c = w

[i]
c − αδTD(k)

∂λ̂(s(k))

∂w
[i]
c

ν
[i+1]
c = ν

[i]
c − αδTD(k)

∂λ̂(s(k))

∂v
[i]
c

(23)
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Figure 2. Architecture of the DHP-based lateral control system. The solid lines denote signal paths and the dashed lines
denote data paths.

where i is the iteration number, 0<α≤ 1 is the step

size and ∂λ̂(s(k))/∂w
[i]
c , ∂λ̂(s(k))/∂ν

[i]
c can be calculated

by (21).

3.2.2 The Actor

The actor is to approximate the optimal control u∗. Sup-
pose the control signal subjects to the following constraint:

‖u(k)‖ ≤ Ū (24)

where Ū is a positive constant. The approximation struc-
ture of the actor is given as:

û(k) = ŪΦ(wT
a σ(ν

T
a s(k))) (25)

where the term wT
a σ(ν

T
a s(k)) is implemented via a three-

layer BP neural network. νa is the weight from the
input layer to the hidden layer, wa is the weight from the
hidden layer to the output layer and σ(·) is the sigmoid
function. Φ(·) is a monotonic odd function and subjects to
‖Φ(·)‖ ≤ 1. In addition, its first derivative is bounded by
a constant B.

Then according to (18), we define:

ε(k) =

{
∂ŝ(k + 1)

∂û(k)

}T

λ̂(ŝ(k + 1)) (26)

where ∂ŝ(k + 1)/∂û(k) can be computed via (13).
Then the actor’s weight update rules are:

w
[i+1]
a = w

[i]
a − βε(k)

∂û(k)

∂w
[i]
a

ν
[i+1]
a = ν

[i]
a − βε(k)

∂û(k)

∂ν
[i]
a

(27)

where i is the iteration number, 0<β≤ 1 is the step size

and ∂û(k)/∂w
[i]
a , ∂û(k)/∂ν

[i]
a can be calculated by (25).

4. Simulation Results

In this section, two driving courses, i.e., the lane change
course and the figure eight course shown in Fig. 3, are uti-
lized to evaluate the performance of the proposed scheme.
In Fig. 3(a), the lane change course requires the vehicle to
perform a single lane change on a two-lane road. It is a pro-
cedure to evaluate the capability of tracking a straight path
and changing lanes. The eight course shown in Fig. 3(b) is
to evaluate the capability of tracking a varying curvature
path.

In the design of the DHP-based controller, the critic
and actor neural networks are constructed in (21) and (25)
with structures 4-12-4 and 4-12-1, respectively. The sig-
moid function is σ(x)= 1/(1+ exp(−x)) and the mono-
tonic odd function in (25) is chosen as Φ(x)= tanh(x).
The control boundary Ū in (24) is set to be 0.2 based

on the real vehicle dynamics. The initial weights w
[0]
c ,

ν
[0]
c , w

[0]
a and ν

[0]
a are all selected randomly from −0.5 to

0.5. The step sizes α and β are set to be 0.6 and 0.4,
respectively. The boundary of the posture error Ebound is
chosen as [−3, 3;−3, 3;−π/2, π/2; 0, 70], which means the
states ex, ey, eθ and v are constrained within the follow-
ing intervals: [−3, 3] (m), [−3, 3] (m), [−π/2, π/2] (rad),
[0, 70] (km/h). The maximum failed number Nmax is 200.
The numberM of the points on the local path is set to be 5.
The interval Ts is 0.05 s and the wheelbase L is 2.85m. The
reward function r is defined in (14) with Q1 =0.2, Q2 =1.6
and Q3 =0.2.

In the simulation, the proposed method is compared
with pure pursuit, PD control as well as the Stanley
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Figure 3. Driving courses: (a) Lane change course and (b) figure eight course.

method. The control law of pure pursuit is given as fol-

lows [8]: δ(k)= arctan
(

2L sin(α)
K1v(k)

)
, where L is the vehicle’s

wheelbase, α is the angle between the vehicle’s orientation
and the look-ahead vector, v(k) is the vehicle speed and
K1 is the gain parameter. In PD control, the control law is
δ(k)=Kpe(k) +Kdė(k), where e(k) is the lateral posture
error defined in (11) and Kp and Kd are adjustable param-
eters. In the Stanley method [8], the steering control sig-

nal is generated via δ(k)= θe(k)+arctan
(Kefa(k)

vx(k)

)
, where

θe(k) and efa(k) are the heading error and the distance
between the centre of front wheels and its nearest path
point, respectively. K is a parameter.

To obtain the best control performance of each method,
the parameters K1,Kp,Kd and K are empirically selected
as 0.28, [2, 2, 2], [0.05, 0.05, 0.05] and 5 based on the simu-
lation and real-world driving, respectively. In the simula-
tion, the tracking performance of pure pursuit, PD control,
Stanley and DHP at different vehicle speeds on the tested
courses are obtained and compared. In the design of the
DHP-based lateral controller, the control policy is obtained
based on the learning for the two courses and during DHP
learning, the vehicle speeds are randomly changed from
1 km/h to 70 km/h among different learning episodes,
which can make the control policy obtained via DHP suit-
able to track different reference paths under various vehicle
speeds.

In the lane change course, the number of the global
path points is 565 and the initial path point is set to be
z1 = [0; 0; 0]. The initial vehicle coordinate is set to be
[0.5; 0.5; 0.1π]. Figure 4 illustrates the tracking control
performance of pure pursuit, PD control, Stanley and DHP
at vehicle speeds of 10 km/h and 30 km/h. Compared with

Figure 4. The tracking control performance in the lane
change course at vehicle speeds of 10 km/h and 30 km/h.

the pure pursuit, PD control and Stanley methods, the
DHP-based controller can make the vehicle to track the
reference path faster when initial lateral error exists and
has smaller overshoot. It is illustrated that at vehicle
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Figure 5. The average cross track error at different vehicle
speeds in the lane change course.

Figure 6. The tracking control performance in the figure
eight course at vehicle speeds of 10 km/h and 30 km/h.

speeds of 10 km/h and 30 km/h, the DHP-based controller
has better ability of changing lanes than the pure pursuit
method. The abilities of tracking a straight path of the
four methods are comparable under the two speeds.

Figure 5 shows the average cross track error at different
vehicle speeds in the lane change course, where the average
cross error is defined as follows:

Eace =
1

Ne

Ne∑
k=1

√
e2x(k) + e2y(k) (28)

Figure 7. The average cross track error at different vehicle
speeds in the figure eight course.

where Ne is the time step when the vehicle reaches the end
of the reference path, ex(k) and ey(k) are defined in (11).
As illustrated in Fig. 5, the DHP-based controller always
has the least average error at different vehicle speeds.

In the figure eight course, the global path consists of
1,257 path points with initial path point z1 = [0; 0; 0.4636].
The initial vehicle coordinate is set to be [0.2; 1.0; 0.05π].
Figure 6 shows the tracking control performance of the
methods at vehicle speeds of 10 km/h and 30 km/h. DHP
always has better tracking performance than PD control.
DHP and pure pursuit have comparable tracking perfor-
mance at vehicle speeds of 10 km/h and 30 km/h. When
the vehicle speed increases, the tracking error of pure pur-
suit becomes larger and the Stanley method has a larger
overshoot. The average cross track error of the figure eight
course at different vehicle speeds is shown in Fig. 7. The
average cross error is defined in (28). It is shown that
the DHP-based lateral controller has smaller average cross
error than the pure pursuit, PD control and Stanley meth-
ods. Meanwhile, the increasing rate of the average cross
error of the DHP-based lateral controller is smaller than
that of the pure pursuit method.

5. Conclusion

In this paper, a novel learning-based lateral control method
is presented for ALVs. Based on the MDP model of the
lateral control problem, the DHP algorithm is utilized to
approximate the optimal control policy. The controller
performance can be efficiently optimized in an online learn-
ing style. By using the lateral control error as well as the
vehicle’s longitudinal velocity as the learning controller’s
inputs, the proposed method can be adaptive to different
longitudinal velocities. Simulation results show the pro-
posed scheme outperforms existing popular methods, such
as the pure pursuit, PD control and Stanley methods. Our
ongoing work is to test the performance of the proposed
method in real ALV platforms and improve the robustness
of the learning controller.
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