COAL MINE TUNNEL PERSONNEL POSITIONING ALGORITHM BASED ON NON-RANGING COMPRESSED SENSING

Yuangang Zhang,∗ Fangyuan He,∗∗ Zhenzhen Liu,∗∗∗ Xuqi Wang,∗∗ and Wenqing Wang∗∗∗∗

References

  1. [1] M. Shalaby, M. Shokair, and N.W. Messiha, Performance en-hancement of TOA localized wireless sensor networks, WirelessPersonal Communications, 95(4), 2017, 4667–4679.
  2. [2] N.H. Nguyen and K. Dogancay, Optimal geometry analysis formultistatic TOA localization, IEEE Transactions on SignalProcessing, 64(16), 2016, 4180–4193.
  3. [3] C.H. Park and J.H. Chang, Robust TOA source localisationalgorithm using prior location, Institution of Engineering andTechnology, 13(3), 2019, 384–391.
  4. [4] Q. Tian, D.Z. Feng, F. Yang, et al., Joint TOA-based syn-chronization and localization via linear-correction technique,Systems Engineering and Electronics, 40(2), 2018, 245–249.
  5. [5] K. Ku, H.L. Liu, Z.J. Ma, et al., Multipath-tolerant rang-ing algorithm in underground tunnel for wireless sensor net-works, Chinese Journal of Scientific Instrument, 38(10), 2017,2461–2468.
  6. [6] L. Li, Z.H. Zhang, E.J. Ding, et al., Precision positioningalgorithm in coal mine tunnel based on RSSI, Journal of ChinaUniversity of Mining &Technology, 46(1), 2017, 183–200.
  7. [7] Y. Liu, T. Liang, and J. Sun, RSSI localization method for mineunderground based on RSSI hybrid filtering algorithm, 20179th IEEE International Conf. on Communication Softwareand Networks, Guangzhou, China, 2017, 327–332.
  8. [8] W.X. Wang, W.N. Qiu, X.H. Hua, et al., Improved Wi-Fi RSSImeasurement for indoor localization, IEEE Sensors Journal,17(7), 2017, 2224–2230.
  9. [9] C. Perera, S. Amarakoon, D. Weerakoon, et al., Enhancedfeature space clustering via spectral parameter weighting foracoustic fingerprinting based indoor localization, MechatronicSystems and Control, 44(3), 2016, 95–103.
  10. [10] M. Wang and Q.Z. Chen, A node localization algorithm basedon distributed clustering of anchor-free nodes, MechatronicSystems and Control, 44(4), 2016, 170–179.
  11. [11] E.J. Candes and M.B. Wakin, An introduction to compressivesampling, IEEE Signal Processing Magazine, 25(2), 2008,21–30.
  12. [12] D. Donoho, Compressed sensing, IEEE Transactions on In-formation Theory, 52(4), 2006, 1289–1306.
  13. [13] R.G. Baraniuk, Compressive sensing [lecture notes], IEEESignal Processing Magazine, 24(4), 2007, 118–121.
  14. [14] J.A. Tropp and A.C. Gilbert, Signal recovery from randommeasurements via orthogonal matching pursuit, IEEE Trans-actions on Information Theory, 53(12), 2007, 4655–4666.
  15. [15] D. Needell and J.A. Tropp, CoSaMP, iterative signal recoveryfrom incomplete and inaccurate samples, Applied & Compu-tational Harmonic Analysis, 26(3), 2008, 301–321.
  16. [16] W. Jonathan, Approximately certifying the restricted isometryproperty is hard, IEEE Transactions on Information Theory,64(8), 2017, 5488–5497.
  17. [17] X.Y. Shen and Y.T. Gu, Restricted isometry property ofsubspace projection matrix under random compression, IEEESignal Processing Letters, 22(9), 2015, 1326–1330.
  18. [18] Q.Y. Li and Y.W. Wu, Orthogonal matching pursuit algo-rithm based on subspace, Chinese Journal of Armament andEquipment Engineering, 36(6), 2015, 113–116.
  19. [19] D. Wei and O. Milenkovic, Subspace pursuit for compressivesensing signal reconstruction, IEEE Press, 55(2011), 2009,1287–1305.
  20. [20] Z.Z. Yang, Z. Yang, and L.H. Sun, Review of orthogonal match-ing pursuit algorithms for signal compression reconstruction,Signal Processing (China), 29(4), 2013, 486–496.

Important Links:

Go Back