A NOVEL RECURRENT TYPE-2 FUZZY NEURAL NETWORK FOR STEPPER MOTOR CONTROL

Jafar Tavoosi∗

References

  1. [1] F. Nickols and Y.-J. Lin, The stepper motor and its control,creating precision robots, Chapter 4 (Oxford: Butterworth-Heinemann, 2019) 47–86.
  2. [2] J. De Viaene, S. Derammelaere, and K. Stockman, Load angleestimation for dynamic stepping motor motion applications,Mechatronics, 53, 2018, 229–240.
  3. [3] Ł. Warguła, P. Krawiec, J.M. Adamiec, and K.J. Walu´s, Theinvestigations of dynamic characteristics of a stepper motor,Procedia Engineering, 177, 2017, 318–323.
  4. [4] L. Wang, Y. Liu, K. Li, S. Chen, and X. Tian, Development ofa resonant type piezoelectric stepping motor using longitudinaland bending hybrid bolt-clamped transducer, Sensors andActuators A: Physical, 285, 2019, 182–189.
  5. [5] A. Milecki and J. Ortmann, Electrohydraulic linear actuatorwith two stepping motors controlled by overshoot-free algo-rithm, Mechanical Systems and Signal Processing, 96, 2017,45–57.
  6. [6] N.M. Elsodany, S.F. Rezeka, and N.A. Maharem, Adaptive PIDcontrol of a stepper motor driving a flexible rotor, AlexandriaEngineering Journal, 50 (2), 2011, 127–136.
  7. [7] A. Attiya, S. Shneen, B. Abbas, and Y. Wenyu, Variablespeed control using fuzzy-PID controller for two-phase hybridstepping motor in robotic grinding, Indonesian Journal ofElectrical Engineering and Computer Science, 3, 2016, 102–118.
  8. [8] H.N. Tran, K.M. Le, and J.W. Jeon, Adaptive current controllerbased on neural network and double phase compensator fora stepper motor, IEEE Transactions on Power Electronics,34(8), 2019, 8092–8103.
  9. [9] J. Zhao, P.K. Wong, X. Ma, and Z. Xie, Design and analysisof an integrated sliding mode control-two-point wheelbasepreview strategy for a semi-active air suspension with steppermotor-driven gas-filled adjustable shock absorber, Proceedingsof Institution of Mechanical Engineers, Part I: J. Systems andControl Engineering, 232(9), 2018, 1194–1211.
  10. [10] D. Shin, W.H. Kim, and C.C. Chung, Position control of apermanent magnet stepper motor by MISO backstepping insemi-strict feedback form IEEE/ASME Int Conf on AdvancedIntelligent Mechatronics (AIM), Budapest, Hungary, 2011,808–813.
  11. [11] Y. Bastani and G. R. Vossoughi, Adaptive inverse microsteptracking control of a hybrid stepper motor using RBF andMLP neural networks, IEEE Int. Conf. Mechatronics andAutomation, Niagara Falls, ON, 2005, 1334–1339.
  12. [12] J. Tavoosi, M. Alaei, and B. Jahani, Neuro-fuzzy controller forposition control of robot arm, 5th Symposium on Advance inScience & Technology, Mashhad, Iran, 2011.
  13. [13] J. Tavoosi, A.S. Jokandan, and M.A. Daneshwar, A new methodfor position control of a 2-DOF robot arm using neuro—Fuzzycontroller, Indian Journal of Science and Technology, 5(3),2012, 2253–2257.
  14. [14] Z. Yaghoubi and H. Zarabadipour, Hybrid neural network con-trol of mobile robot system via anti-control of chaos, Mecha-tronic Systems and Control, 47, 2019.
  15. [15] D. Zhang, W. Feng, L. Wei, and X. Hu, RBF neural net-work PID space vector control of linear servo load simulator,Mechatronic Systems and Control, 47, 2019.
  16. [16] R.J. Guo, B. Cain, and J. Armstrong, Tuning fuzzy logicmotor model for pilot control behavior during helicopter flightmanoeuvres, Mechatronic Systems and Control, 46, 2018.5
  17. [17] J. Tavoosi, A new type-2 fuzzy systems for flexible-joint robotarm control, AUT Journal of Modeling and Simulation, 2019,DOI: 10.22060/miscj.2019.14478.5108.
  18. [18] Y.P. Asad, A. Shamsi, and J. Tavoosi, Backstepping-basedrecurrent type-2 fuzzy sliding mode control for MIMO systems(MEMS triaxial gyroscope case study), International Jour-nal of Uncertainty, Fuzziness and Knowledge-Based Systems,25(2), 2017, 213–233.
  19. [19] Y.P. Asad, A. Shamsi, H. Ivani, and J. Tavoosi, Adaptiveintelligent inverse control of nonlinear systems with regard tosensor noise and parameter uncertainty (magnetic ball levitaionsystem case study), International Journal on Smart Sensingand Intelligent Systems, 9 (1), 2016, 148–169.
  20. [20] J. Tavoosi and M.A. Badamchizadeh, A class of type-2 fuzzyneural networks for nonlinear dynamical system identification,Neural Computing & Application, 23(3), 2013, 707–717.
  21. [21] I.F. Bouguenna, A. Azaiz, A. Tahour, and A. Larbaoui, Robustneuro-fuzzy sliding mode control with extended state observerfor an electric drive system, Energy, 169, 2019, 1054–1063.
  22. [22] G. Farahani and K. Rahmani, Speed control of a separatelyexcited DC motor using new proposed fuzzy neural algorithmbased on FOPID controller, Journal of Control, Automationand Electrical Systems, 30(5), 2019, 1–13.
  23. [23] J. Tavoosi, A.A. Suratgar, and M.B. Menhaj, Stability analysisof recurrent type-2 TSK fuzzy systems with nonlinear conse-quent part, Neural Computing & Applications, 28(1), 2015,47–56.
  24. [24] K. Premkumar, B.V. Manikandan, and C.A. Kumar, Antlionalgorithm optimized fuzzy PID supervised on-line recurrentfuzzy neural network based controller for brushless DC motor,Electric Power Components and Systems, 45(20), 2017, 2304–2317.
  25. [25] J. Tavoosi, A.A. Suratgar, and M.B. Menhaj, Nonlinear systemidentification based on a self-organizing type-2 fuzzy RBFN,Engineering Applications of Artificial Intelligence, 54, 2016,26–38.
  26. [26] J. Tavoosi, A.A. Suratgar, and M.B. Menhaj, Stable ANFIS2for nonlinear system identification, Neurocomputing, 182, 2016,235–246.
  27. [27] J. Tavoosi, A.A. Suratgar, and M.B. Menhaj, Stability analysisof a class of MIMO recurrent type-2 fuzzy systems, Interna-tional Journal of Fuzzy Systems, 19(3), 2016, 895–908.
  28. [28] H. Hassani and J. Zari, Interval type-2 fuzzy logic controllerdesign for the speed control of DC motors, Systems Science &Control Engineering, 3(1), 2015.
  29. [29] R. Jahani, H. Chahkandi Nejad, H.A. Shayanfar, and A. Zare,Positioning control of PM stepper motor based on type-2fuzzy robust control, International Journal on Technical andPhysical Problems of Engineering, 2(5), 2010, 19–26.

Important Links:

Go Back