Mehran Tabasi and Saeed Balochian


  1. [1] A.S. Hegazi, and A.E. Matouk, Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system, Applied Mathematics Letters, 24(11), 2011, 1938–1944.
  2. [2] A.E. Matouk, Chaos, feedback control and synchronization of a fractional order modified autonomous Van der Pol-duffing circuit, Communications in Nonlinear Science and Numerical Simulation, 16(2), 2011, 975–986.
  3. [3] Y. Tang, X. Zhang, C. Hua, L. Li, and Y. Yang, Parameter identification of commensurate fractional order chaotic system via differential evolution, Physics Letters A, 376(4), 2012, 457–464.
  4. [4] H. Zhu, S. Zhou, and J. Zhang, Chaos and synchronization of the fractional order Chua’s system, Chaos, Solitons & Fractals, 39(4), 2009, 1595–1603.
  5. [5] A. Yuce, N. Tan, and D.P. Atherton, Fractional order PI controller design for time delay systems, IFAC, 49(10), 2016, 94–99.
  6. [6] Y. Batmani, Controller design for a class of nonlinear fractional order systems, 4th International Conference on Control, Instrumentation, and Automation (ICCIA), Qazvin, Iran 2016, 27–28.
  7. [7] A. Oustaloup, The CRONE approach: Theoretical developments and major applications, Proceedings of the Second IFAC Workshop on Fractional Differentiation and Its Applications, Porto, Portugal, 2006, 39–69.
  8. [8] I. Podlubny, Fractional order system and PIλDμ– controllers, IEEE Transactions on Automatic Control, 44(1), 1999, 208– 214.
  9. [9] S. Khorashadizadeh, and M.H. Majidi, Chaos synchronization using the Fourier series expansion with application to secure communications, AEU – International Journal of Electronics and Communications, 82, 2017, 37–44.
  10. [10] H.T. Yau, Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control, Mechanical Systems and Signal Processing, 22, 2008, 408–418.
  11. [11] M. Shahzad, Chaos synchronization of an ellipsoidal satellite via active control, Progress in Applied Mathematics, 3(2), 2012, 16–23.
  12. [12] T. Yang, A survey of chaotic secure communication systems, International Journal of Computational Cognition, 2(2), 2004, 81–130.
  13. [13] V.A. Lodi, S. Donati, and A. Scire, Synchronization of chaotic injected-laser systems and its application to optical cryptography, IEEE Journal of Quantum Electronics, 32(6), 1996, 953–959.
  14. [14] M.S. Tavazoei, and M. Haeri, Determination of active sliding mode controller parameters in synchronizing different chaotic systems, Chaos, Solitons & Fractals, 32(2), 2007, 583–591.
  15. [15] H.T. Yau, Design of adaptive sliding mode controller for chaos synchronization with uncertainties, Chaos, Solitons & Fractals, 22(2), 2004, 341–347.
  16. [16] R. Caponetto, G. Dongola, and L. Fortuna, Fractional order systems modeling and control applications, World Scientific Series on Nonlinear Science, Series A, 72, 2010, 52–76.
  17. [17] L.J. Sheu, H.K. Chen, J.H. Chen, L.M. Tam, W.C. Chen, K.T. Lin, and Y. Kang, Chaos in the Newton–Leipnik system with fractional order, Chaos, Solitons & Fractals, 36(1), 2008, 98–103.
  18. [18] P. Arena, R. Caponetto, L. Fortuna, and D. Porto, Chaos in a fractional order. Duffing system, Proceedings ECCTD, Budapest, 1997, 1259–1262.
  19. [19] N. Noghredani, and S. Balochian, Synchronization of fractional order uncertain chaotic systems with input nonlinearity, International Journal of General Systems, 44(4), 2015, 485–498.
  20. [20] A. Nourian, and S. Balochian, The adaptive synchronization of fractional order Liu chaotic system with unknown parameters, Pramana Journal of Physics, 86(6), 2016, 1401–1407.
  21. [21] S. Balochian, and M. Nazari, Stability of particular class of fractional differential inclusion systems with input delay, Control and Intelligent Systems, 42(4), 2014, 1–5.
  22. [22] W. Deng, and C. Li, Synchronization of chaotic fractional Chen system, Journal of the Physical Society of Japan, 74(6), 2005, 1645–1648.
  23. [23] Y. Tang, X. Zhang, D. Zhang, G. Zhao, and X. Guan, Fractional order sliding mode controller design for antilock braking systems, Neurocomputing, 111, 2013, 122–130.
  24. [24] H. Delavari, R. Ghaderi, A. Ranjbar, and S. Momani, Fuzzy fractional order sliding mode controller for nonlinear systems, Communications in Nonlinear Science and Numerical Simulation, 15, 2010, 963–978.
  25. [25] M.¨O. Efe, Fractional order sliding mode controller design for fractional order dynamic systems, New Trends in Nanotechnology and Fractional Calculus Applications, 5, 2010, 463–470,
  26. [26] A. Riahi, N. Noghredani, M. Shajiee, and N. Pariz, Synchronization of a novel class of fractional order uncertain chaotic systems via adaptive sliding mode controller, International Journal of Control and Automation, 9(1), 2016, 63–80.
  27. [27] R. Kumar Upadhyay, S.R.K. Iyengar, Introduction to mathematical modeling and chaotic dynamics (New York, USA: Taylor & Francis Group, 2014), 332.
  28. [28] D.I. Rosas Almeida, J. Alvarez, and J.G. Barajas, Robust synchronization of Sprott circuits using sliding mode control, Chaos, Solitons & Fractals, 30, 2006, 11–18.
  29. [29] D.Xu, Chaos synchronization between two different Sprott systems, Advances in Theoretical and Applied Mechanics, 3(4), 2010, 195–201.
  30. [30] M. Daszkiewicz, Chaos synchronization of identical Sprott systems by active control, Advances in Theoretical and Applied Mechanics, 10(1), 2017, 21–32.
  31. [31] H.G. Dang, Dynamics and synchronization of the fractional order Sprott E system, Advanced Materials Research, 850–851, 2014, 876–879.
  32. [32] I. Koyuncu, M. Al¸cın, and I. Pehlivan, Electronic circuit realization and synchronization application of Sprott 94 S chaotic system for secure communication systems, Signal Processing and Communications Applications Conference (SIU), Haspolat, Turkey, 2013, doi: 10.1109/SIU.2013.6531315
  33. [33] N. Heymans, and I. Podlubny, Physical interpretation of initial conditions for fractional differential equations with Riemann– Liouville fractional derivatives, Rheologica Acta, 45, 2006, 765–771.

Important Links:

Go Back