Raouf Fareh, Tamer Rabie, Said Grami and Mohammed Baziyad


  1. [1] P. Corke, Robotics, vision and control: Fundamental algorithms in MATLAB (New York, USA: Springer, 2011).
  2. [2] T. Rabie, B. Abdulhai, A. Shalaby, and A. El-Rabbany, Mobile active-vision traffic surveillance system for urban networks, Computer-Aided Civil and Infrastructure Engineering, 20(4), 2005, 231–241.
  3. [3] R. Bajcsy, Y. Aloimonos, and J.K. Tsotsos, Revisiting active perception, Autonomous Robots, 42(2), 2018, 177–196.
  4. [4] T.F. Rabie and D. Terzopoulos, Active perception in virtual humans, Vision Interface (VI 2000), Montreal, Canada, 2000, 16–22.
  5. [5] D. Terzopoulos and T.F. Rabie, Animat vision: Active vision in artificial animals, Computer Vision, 1995. Proc., Fifth International Conf. on, MA, USA, IEEE, 1995, 801–808.
  6. [6] E.N. Malamas, E.G. Petrakis, M. Zervakis, L. Petit, and J.-D. Legat, A survey on industrial vision systems, applications and tools, Image and Vision Computing, 21(2), 2003, 171–188. 665
  7. [7] H.S. Ali, A.I. Ismail, F.A. Farag, and F.E.A. El-Samie, Speeded up robust features for efficient iris recognition, Signal, Image and Video Processing, 10(8), 2016, 1385–1391.
  8. [8] R.Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses, IEEE Journal of Robotics and Automation, 3(4), 1987, 323–344.
  9. [9] M. Narimani, S. Nazem, and M. Loueipour, Robotics vision- based system for an underwater pipeline and cable tracker, OCEANS 2009-EUROPE, Cambridge, MA, USA, IEEE, 2009, 1–6.
  10. [10] C. Siagian and L. Itti, Biologically-inspired robotics vision Monte-Carlo localization in the outdoor environment, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, CA, USA, IEEE, 2007, 1723–1730.
  11. [11] M.-S. Chang and J.-H. Chou, A novel machine vision-based mobile robot navigation system in an unknown environment, International Journal of Robotics & Automation, 25(4), 2010, 344.
  12. [12] L. Wang and C. Luo, A hybrid genetic Tabu search algorithm for mobile robot to solve AS/RS path planning, International Journal of Robotics and Automation, 33(2), 2018, 161–168.
  13. [13] H.M. Choset, Principles of robot motion: Theory, algorithms, and implementation (Massachusetts, USA: MIT Press, 2005).
  14. [14] S.M. LaValle, Planning algorithms (Cambridge, UK: Cambridge University Press, 2006).
  15. [15] D. Delling, P. Sanders, D. Schultes, and D. Wagner, Engineering route planning algorithms, algorithmics of large and complex networks (Berlin, Heidelberg: Springer-Verlag, 2009), 117–139.
  16. [16] R. Bohlin and L.E. Kavraki, Path planning using lazy PRM, Robotics and Automation, 2000. Proc. ICRA’00. IEEE International Conf. on, CA, USA, IEEE, Vol. 1, 2000, 521–528.
  17. [17] D. Hsu, G. S´anchez-Ante, and Z. Sun, Hybrid PRM sampling with a cost-sensitive adaptive strategy, Proc. of the 2005 IEEE International Conf. on Robotics and Automation, Barcelona, Spain, IEEE, 2005, 3874–3880.
  18. [18] D.-H. Yang and S.-K. Hong, A roadmap construction algorithm for mobile robot path planning using skeleton maps, Advanced Robotics, 21(1–2), 2007, 51–63.
  19. [19] K. Seo and J.S. Lee, Kinematic path-following control of a mobile robot under bounded angular velocity error, Advanced Robotics, 20(1), 2006, 1–23.
  20. [20] G. Na, S. Xiaoyan, G. Dunwei, and Z. Yong, Solving robot path planning in an environment with terrains based on interval multi-objective PSO, International Journal of Robotics and Automation, 31(2), 2015, 100–110.
  21. [21] J. Ni, K. Wang, Q. Cao, Z. Khan, and X. Fan, A memetic algorithm with variable length chromosome for robot path planning under dynamic environments, International Journal of Robotics and Automation, 32(4), 2017, 414–424.
  22. [22] L. Huang and L. Tang, Dynamic target tracking control for a wheeled mobile robots constrained by limited inputs, IFAC Proceedings Volumes, Korea, 41(2), 2008, 3087–3091.
  23. [23] G. Heredia and A. Ollero, Stability of autonomous vehicle path tracking with pure delays in the control loop, Advanced Robotics, 21(1–2), 2007, 23–50.
  24. [24] A. Abbaspour, S.A.A. Moosavian, and K. Alipour, Formation control and obstacle avoidance of cooperative wheeled mobile robots, International Journal of Robotics and Automation, 30(5), 2015, 418–428.
  25. [25] Z. Yan, B. Hao, W. Zhang, and S.X. Yang, Dubins-RRT path planning and heading-vector control guidance for a UUV recovery, International Journal of Robotics and Automation, 31(3), 2016, 251–262.
  26. [26] G.J. Iddan and G. Yahav, Three-dimensional imaging in the studio and elsewhere, Photonics West 2001-Electronic Imaging, International Society for Optics and Photonics, CA, United States, 2001, 48–55.
  27. [27] T. Butkiewicz, Low-cost coastal mapping using Kinect v2 time-of-flight cameras, 2014 Oceans-St. John’s, St. John’s, NL, Canada, IEEE, 2014, 1–9.
  28. [28] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation, 12(4), 1996, 566–580.
  29. [29] S.G. Tzafestas, Introduction to mobile robot control (Amsterdam, Netherlands: Elsevier, 2013).
  30. [30] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, A stable tracking control method for an autonomous mobile robot, Robotics and Automation, 1990. Proc., 1990 IEEE International Conf. on, IEEE, 1990, 384–389.
  31. [31] M. Hou, G. Duan, and M. Guo, New versions of Barbalat’s lemma with applications, Journal of Control Theory and Applications, 8(4), 2010, 545–547.

Important Links:

Go Back