PERFORMANCE ANALYSIS OF A 10-MW WIND TURBINE HTS GENERATOR UNDER STATOR UNBALANCED CONDITIONS

Rouhollah Shafaei and Fatemeh Amirkhanloo

References

  1. [1] Y. Xu, N. Maki, and M. Izumi, Overview study on electrical design of large-scale wind turbine HTS generators, IEEE Transactions on Applied Superconductivity, 28(5), 2018, Art. no. 5206905.
  2. [2] J. Jeong, D. An, J. Hong, H. Kim, and Y. Jo, Design of a 10-MW-Class HTS homopolar generator for wind turbines, IEEE Transactions on Applied Superconductivity, 27(4), 2017, Art. no. 5202804.
  3. [3] G. Sarmiento, S. Sanz, A. Pujana, J. Merino, I. Marino, M. Tropeano, et al., Design and testing of real-scale MgB2 coils for SUPRAPOWER 10-MW wind generators, IEEE Transactions on Applied Superconductivity, 26(3), 2016, Art. no. 5203006.
  4. [4] Y. Terao, M. Sekino, and H. Ohsaki, Comparison of conventional and superconducting generator concepts for offshore wind turbines, IEEE Transactions on Applied Superconductivity, 23(3), 2013, Art. no. 5200904.
  5. [5] A.B. Abrahamsen, N. Mijatovic, E. Seiler, T. Zirngibl, C. Træholt, P.B. Nørgard, et al., Superconducting wind turbine generators, Superconductor Science and Technology, 23, 2010, Art. no. 034019.
  6. [6] I. Marino, A. Pujana, G. Sarmiento, S. Sanz, J. Merino, M. Tropeano, et al., Lightweight MgB2 superconducting 10 MW wind generator, Superconductor Science and Technology, 29(2), 2015, Art. no. 024005.
  7. [7] X. Song, N. Mijatovic, J. Kellers, C. Buhrer, A. Rebsdorf, J. Hansen, et al., A full-size high-temperature superconducting coil employed in a wind turbine generator setup, IEEE Transactions on Applied Superconductivity, 27(4), 2017, Art. no. 5201105.
  8. [8] J.F. Gieras, Superconducting electrical machines state of the art, Przeglad Elektro techniczny, 85(12), 2009, 1–19.
  9. [9] C. Lewis and J. Muller, A direct drive wind turbine HTS generator, in IEEE Power Engineering Society General Meeting, California, USA, 2007, 18.
  10. [10] B.C. Robert and H.S. Ruiz, Magnetization profiles of AC type-II superconducting wires exposed to DC magnetic fields, IEEE Transactions on Applied Superconductivity, 28(4), 2018, Art. no. 8200805.
  11. [11] H.S. Ruiz and A. Badıa-Majos, Smooth double critical state theory for type-II superconductors, Superconductor Science and Technology, 23, 2010, Art. no. 024005.
  12. [12] L. Yijie, J. Reeves, X. Xiong, Y. Qiao, Y. Xie, P. Hou, et al., Fast growth process of long-length YBCO coated conductor with high critical current density, IEEE Transactions on Applied Superconductivity, 15(2), 2005, 2771–2774.
  13. [13] S. Fukui, J. Ogawa, T. Sato, O. Tsukamoto, N. Kashima, and S. Nagaya, Study of 10 MW-class wind turbine synchronous generators with HTS field windings, IEEE Transactions on Applied Superconductivity, 21(3), 2011, 1151–1154.
  14. [14] G. Klaus, M. Wilke, J. Frauenhofer, W. Nick, and H.W. Neumller, Design challenges and benefits of HTS synchronous machines, Proc. IEEE Power Engineering Society General Meeting, California, USA, 2007, 18.
  15. [15] B. Go, H. Sung, M. Park, and I. Yu, Structural design of a module coil for a 12-MW class HTS generator for wind turbine, IEEE Transactions on Applied Superconductivity, 27(4), 2017, Art. no. 5202405.
  16. [16] G. Kim, N. Kim, K. Kim, M. Park, I. Yu, S. Lee, et al., EMTDC based simulation of 10 MW class grid-connected superconducting wind turbine generator, IEEE Transactions on Applied Superconductivity, 22(3), 2012, Art. no. 5202105.
  17. [17] R. Shafaie and M. Kalantar, Design of a 10-MW-class wind turbine HTS synchronous generator with optimized field winding, IEEE Transactions on Applied Superconductivity, 23(4), 2013, Art. no. 5202307.
  18. [18] Y. Cheng, D. Li, W. Kong, R. Qu, and F. Lin, Electromagnetic design of a large-scale double-stator direct driving HTS wind generator, IEEE Transactions on Applied Superconductivity, 28(4), 2018, Art. no. 5205105.
  19. [19] R. Shafaie, M. Kalantar, and A. Gholami, Thermal analysis of 10-MW-class wind turbine HTS synchronous generator, IEEE Transactions on Applied Superconductivity, 24(2), 2014, Art. no. 5202209.
  20. [20] R. Shafaie and M. Kalantar, Loss optimization of a 10 MW class HTS synchronous generator based wind turbines, 14th Int. Conf. on Environment and Electrical Engineering ICEEE, Warsaw, Poland, 2014, 29–33.
  21. [21] R. Shafaie and M. Kalantar, Comparison of theoretical and numerical electromagnetic modeling for HTS synchronous generator, IEEE Transactions on Applied Superconductivity, 25(1), 2015, Art. no. 5200107.
  22. [22] X. Song, D. Liu, H. Polinder, N. Mijatovic, J. Holboll, and B. Jensen, Short circuits of a 10-MW high-temperature super-conducting wind turbine generator, IEEE Transactions on Applied Superconductivity, 27(4), 2017, Art. no. 5201505.
  23. [23] R. Shafaei and F. Amirkhanloo, Design of a combined screening and damping layer for a 10 MW class wind turbine HTS synchronous generator, IEEE Transactions on Applied Super-conductivity, 28(6), 2018, 1–12.
  24. [24] R. Shafaie and M. Kalantar, Transient performance of a large-scale wind turbine HTS synchronous generator under short circuit conditions, 5th IEEE Conf. on Thermal Power Plants (CTPP), Tehran, Iran, 2014, 99–102.
  25. [25] Y. Liu, R. Qu, J. Wang, H. Fang, X. Zhang, and H. Chen, Influences of generator parameters on fault current and torque in a large-scale superconducting wind generator, IEEE Transactions on Applied Superconductivity, 25(6), 2015, Art. no. 5204309.
  26. [26] R. Shafaie, F. Amirkhanloo, and M. Kalantar, Toward an optimum design of large scale HTS synchronous generator for wind turbine applications, IEEE Transactions on Applied Superconductivity, 26(2), 2016, Art. no. 5201408.
  27. [27] T.J.E. Miller and A. Hughes, Comparative design and performance analysis of air-cored and iron-cored synchronous machines, Proceeding of the Institution of Electrical Engineers, 124(2), 1977, 127–132.
  28. [28] N. Nibbio, S. Stavrev, and B. Dutoit, Finite element method simulation of AC loss in HTS tapes with B-dependence E–J power low, IEEE Transactions on Applied Superconductivity, 11(1), 2001, 2631–2634.
  29. [29] S. Stavrev, F. Grilli, B. Dutoit, N. Nibbio, E. Vinot, I. Klutsch, et al., Comparison of numerical methods for modeling of superconductors, IEEE Transactions on Magnetics, 38(2), 2002, 849–852.

Important Links:

Go Back