Tongying Guo, Haichen Wang, Yong Liu, Ming Li, and Ying Wang


  1. [1] R.M. Murray, Recent research in cooperative control of mul-tivehicle systems, International Journal of Dynamic System,Measurement, and Control, 129(5), 2007, 571–583.
  2. [2] K. Krishnamoorthy, D. Casbeer, P. Chandler, M. Pachter,and S. Darbha, UAV search & capture of a moving groundtarget under delayed information, IEEE Conf. on Decisionand Control (CDC), Maui, Hawaii, December 2012.
  3. [3] A.M. Samad, N. Kamarulzaman, M.A. Hamdani, T.A. Mastor,and K.A. Hashim, The potential of unmanned aerial vehicle(UAV) for civilian and mapping application, IEEE Interna-tional Conf. on System Engineering and Technology (ICSET),Shah Alam, Malaysia, August 2013.
  4. [4] N. Basilico, N. Gatti, and F. Amigoni, Leader–follower strate-gies for robotic patrolling in environments with arbitrarytopologies, The 8th International Conf. on Autonomous Agentsand Multiagent Systems, Budapest, Hungary, 2009.
  5. [5] R.D. Cruz-Morales, M. Velasco-Villa, R. Castro-Linares, andE.R. Palacios-Hernandez, Leader–follower formation for non-holonomic mobile robots: discrete-time approach, Interna-tional Journal of Advanced Robotic Systems, 13(2), 2017, 1–12.
  6. [6] Y. Dai and S. Lee, The leader–follower formation control ofnonholonomic mobile robots, International Journal of Control,Automation and Systems, 10(2), 2012, 350–361.
  7. [7] A. Gopalakrishnan, S. Greene, and A. Sekmen, Vision-basedmobile robot learning and navigation, IEEE InternationalWorkshop on Robot and Human Interactive Communication,Nashville, TN, 2005.
  8. [8] H.J. Min, A. Drenner, and N. Papanikolopoulos, Vision-basedleader–follower formations with limited information, IEEEInternational Conf. on Robotics and Automation, Kobe, Japan,2009.
  9. [9] G.L. Mariottini, F. Morbidi, D. Prattichizzo, et al., Vision-based localization for leader–follower formation control, IEEETransactions on Robotics, 25(6), 2009, 1431–1438.
  10. [10] H.G. Tanner, G.J. Pappas, and V. Kumar, Leader-to-formationstability, IEEE Transactions on Robotics and Automation,20(3), 2004, 443–455.
  11. [11] X. Chen and Y. Jia, Adaptive leader–follower formation controlof non-holonomic mobile robots using active vision, ControlTheory Applications, 9(8), 2015, 1302–1311.
  12. [12] H.J. Min and N. Papanikolopoulos, Robot formations usinga single camera and entropy-based segmentation, Journal ofIntelligent & Robotic Systems, 68(1), 2012, 21–41.
  13. [13] A. EI-Sayed and B. Ibrahim, Decentralized non-linear controlof leader–follower formation of multiple autonomous mobilerobots, International Journal of Applied Engineering Research,11(9), 2016, 6583–6590.
  14. [14] G. Sequeira, Vision based leader–follower formation control formobile robots, Master Thesis of Missouri University of Scienceand Technology, 2007.
  15. [15] C.S. Hooi, W. Zhao, and G.T. Hiong, Swarming coordinationwith robust control Lyapunov function approach, Journal ofIntelligent and Robotic Systems: Theory and Applications,78(3–4), 2015, 499–515.
  16. [16] G. Wen, Y. Zhao, Z. Duan, W. Yu, and G. Chen, Containmentof higher-order multi-leader multi-agent systems: A dynamicoutput approach, IEEE Transactions on Automatic Control,61(4), 2016, 1135–1140.
  17. [17] M. Hofmeister, K. Kanjanawanishkul, and A. Zell, Smoothreference tracking of a model robot using nonlinear modelpredictive control, European Conference on Mobile Robots, 2,2009, 161–166.
  18. [18] K. Wesselowski and R. Fierro, A dual-mode model predictivecontroller for robot formations, IEEE Conf. on Decision andControl (CDC), Atlantis, Paradise Island, Bahamas, January2004.550
  19. [19] W. Dunbar and R. Murray, Model predictive control of co-ordinated multi-vehicle formations, Automatica, 2(4), 2006,549–558.
  20. [20] D. Gu and H. Hu, A model predictive controller for robots tofollow a virtual leader, Robotica, 27(6), 2009, 905–913.
  21. [21] K. Maeda and E. Konaka, Cruise control of a two-wheeledvehicle based on MPC to predict the trajectory of a precedingvehicle, The Annual Conf. of the Society of Instrument andControl Engineers, Sapporo, Japan, September 2014.
  22. [22] R.W. Brockett, Asymptotic stability and feedback stabilization,in R.W. Brockett, R.S. Millman and H.J. Sussmann (eds.),Differential geometric control theory, Birkhauser, Boston, 1983,181–208.
  23. [23] F. K¨uhne, W.F. Lagas, and J.M. Gomez, Point stabilization ofmobile robots with nonlinear model predictive control, IEEEInternational Conf. on Mechatronics & Automation, NiagaraFalls, Canada, 2005.
  24. [24] W.F. Lages and J.A.V. Alves, Real-time control of a mobilerobot using linearized model predictive control, The 4th IFACSymposium on Mechatronic Systems, Heidelberg, Germany,2006.
  25. [25] S. Akiba, T. Zanma, and M. Ishida, Optimal tracking controlof two-wheeled mobile robots based on model predictivecontrol, IEEE International Workshop on Advanced MotionControl, Niigata, Japan, March 2010.
  26. [26] S. Akiba, T. Zanma, and M. Ishida, Model predictive con-trol based optimal crusing control of two-wheeled mobilerobots, IEEE Conf. on Robotics Automation and Mechatronics(RAM), Singapore, June 2010.
  27. [27] R. Carelli, C.M. Soria, and B. Morales, Vision-based trackingcontrol for mobile robots, International Conf. on AdvancedRobotics, Seattle, WA, August 2005.
  28. [28] A. Zdeˇsar, I. ˇSkrjanc, and G. Klanˇcar, Visual trajectory-tracking model-based control for mobile robots, InternationalJournal of Advanced Robotic Systems, 10(9), 2013, 1–12.
  29. [29] R. Carelli, C. Soria, O. Nasisi, and E. Freire, Stable AGVcorridor navigation with fused vision-based control signals,IEEE Conf. on Industrial Electronics Society, Sevilla, Spain,November 2002.
  30. [30] S. Servic and S. Ribaric, Determining the absolute orientationin a corridor using projective geometry and active vision, IEEETransaction on Industrial Electronics, 48(3), 2001, 696–710.
  31. [31] J. Wu, J. Wang, L. Wang, and T. Li, Dynamics and control of aplanar 3-DOF parallel manipulator with actuation redundancy,Mechanism and Machine Theory, 4(44), 2009, 835–849.
  32. [32] J. Wu, D. Wang, and L. Wang, A control strategy of a twodegrees-of-freedom heavy duty parallel manipulator, Journalof Dynamic Systems, Measurement and Control, Transactionsof the ASME, 137(6), 2015. DOI: 10.1115/1.4029244.
  33. [33] J. Wu, G. Yu, Y. Gao, and L. Wang, Mechatronics modelingand vibration analysis of a 2-DOF parallel manipulator in a5-DOF hybrid machine tool, Mechanism and Machine Theory,121, 2018, 1339–1351.
  34. [34] T. Dierks, B. Brenner, and S. Jagannathan, Discrete-timeoptimal control of nonholonomic mobile robot formationsusing linearly parameterized neural networks, InternationalJournal of Robotics and Automation, 26(1), 2011, 76–85.
  35. [35] J. Ni, X. Yang, J. Chen, and S.X. Yang, Dynamic bioin-spired neural network for multi-robot formation control inunknown environments, International Journal of Robotics andAutomation, 30(3), 2015, 256–266.
  36. [36] K. Bendjilali, F. Belkhouche, and B. Belkhouche, Robot for-mation modelling and control based on the relative kinematicsequations, International Journal of Robotics and Automation,24(1), 2009, 79–85.
  37. [37] G. Rishwaraj, S.G. Ponnambalam, and R.M.K. Chetty, Multi-robot formation control using a hybrid posture estimationstrategy, International Journal of Robotics and Automation,29(4), 2014, 432–440.
  38. [38] L. Deng, X. Ma, J. Gu, Y. Li, Z. Xu, and Y. Wang, Artificialimmune network-based multi-robot formation path planningwith obstacle avoidance, International Journal of Roboticsand Automation, 31(3), 2016, 233–242.
  39. [39] W.B. Dunbar and D.S. Caveney, Distributed receding horizoncontrol of vehicle platoons: Stability and string stability, IEEETransactions on Automatic Control, 57(3), 2012, 620–633.
  40. [40] M. Saska, V. Vonasek, T. Krajnik, and L. Peuil, Coordinationand navigation of heterogeneous MAV-UGV formations local-ized by a ‘hawkeye’-like approach under a model predictivecontrol scheme, International Journal of Robotics Research,33(10), 2014, 1393–1412.
  41. [41] G. Wen and W. Zheng, On constructing multiple Lyapunovfunctions for tracking control of multiple agents with switchingtopologies, IEEE Transactions on Automatic Control, 2018(in press). DOI: 10.1109/TAC.2018.2885079.

Important Links:

Go Back