Suping Zhao, Bruno Siciliano, Zhanxia Zhu, Alejandro Guti´rrez-Giles, and Jianjun Luo


  1. [1] L. Wang and C. Luo, A hybrid genetic tabu search algorithmfor mobile robot to solve AS/RS path planning, InternationalJournal of Robotics and Automation, 33(2), 2018, 161–168.
  2. [2] B. Hao and Z. Yan, Recovery path planning for an agriculturalmobile robot by Dubins-RRT algorithm, International Journalof Robotics and Automation, 33(2), 2018, 202–207.
  3. [3] L. Wang, C. Luo, M. Li, and J. Cai, Trajectory planning ofan autonomous mobile robot by evolving ant colony system,International Journal of Robotics and Automation, 32(4), 2017,406–413.
  4. [4] J. Ni, K. Wang, Q. Cao, Z. Khan, and X. Fan, A memeticalgorithm with variable length chromosome for robot pathplanning under dynamic environments, International Journalof Robotics and Automation, 32(4), 2017, 414–424.
  5. [5] P. Huang, Y. Xu, and B. Liang, Minimum-torque path planningof space robots using genetic algorithms, International Journalof Robotics and Automation, 21(3), 2006, 229–236.
  6. [6] X. Liu, H. Baoyin, and X. Ma, Optimal path planning ofredundant free-floating revolute-jointed space manipulatorswith seven links, Multibody System Dynamics, 29(1), 2013,41–56.
  7. [7] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics:modelling, planning and control (London: Springer-Verlag,2009).
  8. [8] B. Siciliano and O. Khatib, Springer handbook of robotics(Berlin: Springer-Verlag, 2008).
  9. [9] J. Zhang, H. Lv, D. He, L. Huang, Y. Dai, and Z. Zhang,Discrete bioinspired neural network for complete coverage pathplanning, International Journal of Robotics and Automation,32(2), 2017, 186–193.
  10. [10] L. Li, X. Wang, D. Xu, and M. Tan, An accurate pathplanning algorithm based on triangular meshes in robotic fibreplacement, International Journal of Robotics and Automation,32(1), 2017, 22–32.
  11. [11] J. Craig, Introduction to robotics: mechanics and control (NJ,USA: Pearson, 2005).
  12. [12] H. Liu, Z. Cai, and Y. Wang, Hybridizing particle swarm opti-mization with differential evolution for constrained numericaland engineering optimization, Applied Soft Computing, 10(2),2010, 629–640.
  13. [13] X. Zhao, A perturbed particle swarm algorithm for numericaloptimization, Applied Soft Computing, 10(1), 2010, 119–124.
  14. [14] P. Chauhan, K. Deep, and M. Pant, Novel inertia weight strate-gies for particle swarm optimization, Memetic Computing,5(3), 2013, 229–251.
  15. [15] G. Reinelt, The traveling salesman: computational solutionsfor TSP applications (Berlin: Springer-Verlag, 1994).
  16. [16] F. Caccavale and B. Siciliano, Kinematic control of redundantfree-floating robotic systems, Advanced Robotics, 15(4), 2001,429–448.466
  17. [17] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, Multi-verseoptimizer: a nature-inspired algorithm for global optimization,Neural Computing and Applications, 27(2), 2016, 495–513.
  18. [18] S. Saremi, S. Mirjalili, and A. Lewis, Grasshopper optimisationalgorithm: theory and application. Advances in EngineeringSoftware, 105, 2017, 30–47.
  19. [19] S. Mirjalili, Moth-flame optimization algorithm: A novelnature-inspired heuristic paradigm, Knowledge-Based Systems,89, 2015, 228–249.

Important Links:

Go Back