Hang Dong, Ming Cong, and Heping Chen


  1. [1] C.F. Wu, S.K. Lin, and J. Lambrecht, Integrated object andpath demonstration for industrial robots in adaptive handlingapplications, 19th IEEE Int. Conf. on Emerging Technologiesand Factory Automation Institute of Electrical and ElectronicsEngineers Inc., Barcelona, Spain, 2014.
  2. [2] H. Chen, F. Thomas, and X. Li, Automated industrial robotpath planning for spray painting process: a review, 4th IEEEConf. on Automation Science and Engineering, IEEE Com-puter Society, Washington, DC, United States, 2008.
  3. [3] F. Axel, B.S. Christopher, D. Neil, Combined temperatureand force control for robotic friction stir welding, Journal ofManufacturing Science and Engineering, 136(2), 2014, 021007-1–021007-15.
  4. [4] W. You, M. Kong, and L. Sun, Control system design forheavy duty industrial robot, Industrial Robot: An InternationalJournal, 39(4), 2012, 365–380.
  5. [5] M. Sadeghzadeh, D. Calvert, and H.A. Abdullah, Autonomousvisual servoing of a robot manipulator using reinforcementlearning, International Journal of Robotics and Automation,31(1), 2016, 26–38.
  6. [6] K.G. Shin and N.D. Mckay, Minimum-time control of roboticmanipulators with geometric path constraints, IEEE Transac-tions on Automatic Control, 30(6), 1985, 531–541.
  7. [7] T. Chettibi, H. Lehtihet, and M. Haddad, Minimum costtrajectory planning for industrial robots, European Journal ofMechanics A-solids, 23(4), 2004, 703–715.
  8. [8] C. Zheng, Y. Su, and P.C. Muller, Simple online smoothtrajectory generations for industrial systems, Mechatronics,19(4), 2009, 571–576.
  9. [9] W. Xu, C. Li, and X. Wang, Study on non-holonomic Cartesianpath planning of a free-floating space robotic system, AdvancedRobotics, 23(1–2), 2009, 113–143.
  10. [10] H. Liu, X. Lai, and W. Wu, Time-optimal and jerk-continuoustrajectory planning for robot manipulators with kinematicconstraints, Robotics and computer-Integrated Manufacturing,29(2), 2013, 703–715.
  11. [11] Y. Liu, M. Cong, H. Dong, et al., time-optimal motion planningfor robot manipulators based on elitist genetic algorithm,International Journal of Robotics and Automation, 32(4), 2017,396–405.
  12. [12] A. Gasparetto and V. Zanotto, A technique for time-jerkoptimal planning of robot trajectories, Robotics and Computer-Integrated Manufacturing, 24(3), 2008, 415–426.
  13. [13] T.L. Mai, Y.N. Wang, and T. Ngo, Adaptive tracking controlfor robot manipulators using fuzzy wavelet neural networks,International Journal of Robotics and Automation, 30(1), 2015,26–39.
  14. [14] S. Mike, Global manipulation planning in robot joint spacewith task constraints, IEEE Transactions on Robotics, 26(3),2010, 576–584.
  15. [15] W. Wu, S. Zhu, and S. Liu, Smooth joint trajectory planningfor humanoid robots based on B-splines, 2009 IEEE Int. Conf.on Robotics and Biomimetics, Guilin, China, 2009, 475–479.
  16. [16] H. Lin, A fast and unified method to find a minimum-jerk robotjoint trajectory using particle swarm optimization, Journal ofIntelligent and Robotic Systems, 75(3–4), 2014, 379–392.
  17. [17] A. Piazzi and A. Visioli, Global minimum-jerk trajectory plan-ning of robot manipulators, IEEE transactions on IndustrialElectronics, 47(1), 2000, 140–149.
  18. [18] C. Lin and P. Chang, Formulation and optimization of cu-bic polynomial joint trajectories for industrial robots, IEEETransactions on Automatic Control, 28(12), 1983, 1066–1074.
  19. [19] A. Gasparetto and V. Zanotto, Optimal trajectory planningfor industrial robots, Advances in Engineering Software, 41(4),2010, 548–556.
  20. [20] P. Barre, R. Bearee, and P. Borne, Influence of a jerk controlledmovement law on the vibratory behaviour of high-dynamicssystems, Journal of Intelligent and Robotics Systems, 42(3),2005, 275–293.
  21. [21] P. Huang, Y. Xu, and B. Liang, Global minimum-jerk trajectoryplanning of space manipulator, International Journal of ControlAutomation and Systems, 4(4), 2006, 405–413.
  22. [22] F. Liu and F. Lin, Time-jerk optimal planning of industrialrobot trajectories, International Journal of Robotics and Au-tomation, 31(1), 2016, 1–7.
  23. [23] R. Fung and Y. Cheng, Trajectory planning based on minimumabsolute input energy for an LCD glass-handling robot, AppliedMathematical Modeling, 38(11–12), 2014, 2837–2847.
  24. [24] F. Glen and S. Yury, Iterative dynamic programming: anapproach to minimum energy trajectory planning for roboticmanipulators, Proceedings of IEEE International Conferenceon Robotics and Automation, Minneapolis, MN, USA, vol. 3,1996, 2755–2760.
  25. [25] D. Constantinescu and E. Croft, Smooth and time-optimaltrajectory planning for industrial manipulators along specifiedpaths, Journal of Robotic Systems, 17(5), 2000, 233–249.
  26. [26] A. Piazzi and A. Visioli, Global minimum-time trajectoryplanning of mechanical manipulators using interval analysis,International Journal of Control, 71(4), 1998, 631–652.
  27. [27] K. Deb and A. Pratap, A fast and elitist multiobjective geneticalgorithm: NSGA-II, IEEE Transactions on EvolutionaryComputation, 6(2), 2002, 182–197.
  28. [28] J.J. Durillo, A.J. Nebro, and L. Francisco, On the effect of thesteady-state selection scheme in multi-objective genetic algo-rithms, 5th International Conference on Evolutionary Multi-criterion Optimization, Nantes, France, 2009, 183–197.
  29. [29] A. Konak, D.W. Coit, and A.E. Smith, Multi-objective op-timization using genetic algorithms: A tutorial, ReliabilityEngineering and System Safety, 91(9) 2006 992–1007.
  30. [30] M. Aravendan and R. Panneerselvam, Development and com-parison of hybrid genetic algorithms for network design prob-lem in closed loop supply chain, Intelligent Information Man-agement, 7(06), 2015, 313.
  31. [31] B.K. Gouda, Optimal robot trajectory planning using evo-lutionary algorithms Doctoral Dissertation, Cleveland StateUniversity, 2006.

Important Links:

Go Back