The Hierarchical Model for News Recommendation

Wenxing Hong, NanNan Zheng, Lei Wu, Youchun Ji, Yang Weng

References

  1. [1] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender systems handbook,” inRecommender systems handbook. Springer, 2011, pp. 1–35.
  2. [2] H. Li, S. Zhang, J. Shi, and Y. Hu, “Research and design of intelligent learning system basedon recommendation technology,” MECHATRONIC SYSTEMS AND CONTROL, vol. 47,no. 1, pp. 43–49, 2019.
  3. [3] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: A surveyand new perspectives,” ACM Computing Surveys (CSUR), vol. 52, no. 1, p. 5, 2019.
  4. [4] R. Baeza-Yates, B. d. A. N. Ribeiro et al., Modern information retrieval. New York: ACMPress; Harlow, England: Addison-Wesley, 2011.
  5. [5] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin, “Incorporating contextual informationin recommender systems using a multidimensional approach,” ACM Transactionson Information Systems (TOIS), vol. 23, no. 1, pp. 103–145, 2005.
  6. [6] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, “Using collaborative filtering to weave aninformation tapestry,” Communications of the ACM, vol. 35, no. 12, pp. 61–71, 1992.
  7. [7] W. Hong, S. Zheng, and H. Wang, “Dynamic recommendation in e-recruitment system,”Control and Intelligent Systems, vol. 42, no. 1, 2014.
  8. [8] G. Linden, B. Smith, and J. York, “Amazon. com recommendations: Item-to-item collaborativefiltering,” IEEE Internet computing, no. 1, pp. 76–80, 2003.
  9. [9] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” inLinear Algebra. Springer, 1971, pp. 134–151.
  10. [10] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filtering model,”in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discoveryand data mining. ACM, 2008, pp. 426–434.
  11. [11] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,”Computer, no. 8, pp. 30–37, 2009.
  12. [12] Y. Zhu, X. Shen, and C. Ye, “Personalized prediction and sparsity pursuit in latent factormodels,” Journal of the American Statistical Association, vol. 111, no. 513, pp. 241–252,2016.
  13. [13] O¨ . O¨ zgo¨bek, J. A. Gulla, and R. C. Erdur, “A survey on challenges and methods in newsrecommendation.” in WEBIST (2), 2014, pp. 278–285.
  14. [14] M. Karimi, D. Jannach, and M. Jugovac, “News recommender systems–survey and roadsahead,” Information Processing & Management, vol. 54, no. 6, pp. 1203–1227, 2018.
  15. [15] S. Okura, Y. Tagami, S. Ono, and A. Tajima, “Embedding-based news recommendation formillions of users,” in Proceedings of the 23rd ACM SIGKDD International Conference onKnowledge Discovery and Data Mining. ACM, 2017, pp. 1933–1942.
  16. [16] V. Kumar, D. Khattar, S. Gupta, M. Gupta, and V. Varma, “Deep neural architecture for newsrecommendation.” in CLEF (Working Notes), 2017.
  17. [17] C. Chen, X. Meng, Z. Xu, and T. Lukasiewicz, “Location-aware personalized news recommendationwith deep semantic analysis,” IEEE Access, vol. 5, pp. 1624–1638, 2017.
  18. [18] X. Bai, B. B. Cambazoglu, F. Gullo, A. Mantrach, and F. Silvestri, “Exploiting search historyof users for news personalization,” Information Sciences, vol. 385, pp. 125–137, 2017.
  19. [19] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li, “Drn: A deep reinforcementlearning framework for news recommendation,” in Proceedings of the 2018 WorldWide Web Conference on World Wide Web. International World Wide Web ConferencesSteering Committee, 2018, pp. 167–176.
  20. [20] H. Wang, F. Zhang, X. Xie, and M. Guo, “Dkn: Deep knowledge-aware network for newsrecommendation,” in Proceedings of the 2018 World Wide Web Conference on World WideWeb. International World Wide Web Conferences Steering Committee, 2018, pp. 1835–1844.
  21. [21] J. Lian, F. Zhang, X. Xie, and G. Sun, “Towards better representation learning for personalizednews recommendation: a multi-channel deep fusion approach.” in IJCAI, 2018, pp.3805–3811.
  22. [22] J. D. Hamilton, “Time series analysis,” Economic Theory. II, Princeton University Press,USA, pp. 625–630, 1995.
  23. [23] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biologicalcybernetics, vol. 43, no. 1, pp. 59–69, 1982.
  24. [24] R. Tibshirani, “Regression shrinkage and selection via the lasso: a retrospective,” Journal ofthe Royal Statistical Society: Series B (Statistical Methodology), vol. 73, no. 3, pp. 273–282,2011.
  25. [25] T. Sapatinas, “The elements of statistical learning,” Journal of the Royal Statistical Society:Series A (Statistics in Society), vol. 167, no. 1, pp. 192–192, 2004.
  26. [26] H. Zou and T. Hastie, “Addendum: regularization and variable selection via the elastic net,”Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 67, no. 5,pp. 768–768, 2005.
  27. [27] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal of machineLearning research, vol. 3, no. Jan, pp. 993–1022, 2003.
  28. [28] D. M. Blei, J. D. Lafferty et al., “A correlated topic model of science,” The Annals of AppliedStatistics, vol. 1, no. 1, pp. 17–35, 2007.
  29. [29] H. M.Wallach, “Topic modeling: beyond bag-of-words,” in Proceedings of the 23rd internationalconference on Machine learning. ACM, 2006, pp. 977–984.

Important Links:

Go Back