SCALABLE AND OCCLUSION-AWARE MULTI-CUES CORRELATION FILTER FOR ROBUST STEREO VISUAL TRACKING

Zheng Zhu, Wei Zou, and Feng Zhang

References

  1. [1] Z. Zhu, W. Zou, Q. Wang, and F. Zhang, “A velocity compensation visual servo method for oculomotor control of bionic eyes,” International Journal of Robotics and Automation, vol. 33, no. 1, 2018.
  2. [2] W. Yuan, Z. Cao, Y. Zhang, and M. Tan, “A robot pose estimation approach based on object tracking in monitoring scenes,” International Journal of Robotics and Automation, vol. 32, no. 3, 2017.
  3. [3] K.-H. Lee and J.-N. Hwang, “On-road pedestrian tracking across multiple driving recorders,” IEEE Transactions on Multimedia, vol. 17, no. 9, pp. 1429–1438, 2015.
  4. [4] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A benchmark,” in IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 2411–2418.
  5. [5] L. Cao, C. Wang, and J. Li, “Robust depth-based object tracking from a moving binocular camera,” Signal Processing, vol. 112, pp. 154–161, 2015.
  6. [6] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “Robust multiperson tracking from a mobile platform,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 10, pp. 1831–1846, 2009.
  7. [7] Y. Chen, Y. Shen, X. Liu, and B. Zhong, “3d object tracking via image sets and depth-based occlusion detection,” Signal Processing, vol. 112, pp. 146–153, 2015.
  8. [8] B. Zhong, Y. Shen, Y. Chen, W. Xie, Z. Cui, H. Zhang, D. Chen, T. Wang, X. Liu, S. Peng et al., “Online learning 3d context for robust visual tracking,” Neurocomputing, vol. 151, pp. 710–718, 2015.
  9. [9] Hare S, Golodetz S, Saffari A, et al. “Struck: Structured output tracking with kernels.” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 10, pp. 2096-2109, 2016.
  10. [10] Z. Kalal, K. Mikolajczyk, J. Matas et al., “Tracking-learning-detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, 2012.
  11. [11] Z. Zhu, W. Zou, Q. Wang, and F. Zhang, “STD: A stereo tracking dataset for evaluating binocular tracking algorithms,” in IEEE International Conference on Robotics and Biomimetics, 2016, pp. 2215–2220.
  12. [12] N. Pateromichelakis, A. Mazel, M. Hache, T. Koumpogiannis, R. Gelin, B. Maisonnier, and A. Berthoz, “Head-eyes system and gaze analysis of the humanoid robot romeo,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, pp. 1374–1379.
  13. [13] I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B. Wrede, S. Wachsmuth, and G. Sagerer, “The bielefeld anthropomorphic robot head flobi,” in IEEE international conference on Robotics and automation, 2010, pp. 3384–3391.
  14. [14] T. Kishi, T. Otani, N. Endo, P. Kryczka, K. Hashimoto, K. Nakata, and A. Takanishi, “Development of expressive robotic head for bipedal humanoid robot,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4584–4589.
  15. [15] R. Yao, S. Xia, Z. Zhang, and Y. Zhang, “Real-time correlation filter tracking by efficient dense belief propagation with structure preserving,” IEEE Transactions on Multimedia, vol. 19, no. 4, pp. 772–784, 2017.
  16. [16] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, “A mobile vision system for robust multi-person tracking,” in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.
  17. [17] R. Rifkin, G. Yeo, T. Poggio et al., “Regularized least-squares classification,” Nato Science Series Sub Series III Computer and Systems Sciences, vol. 190, pp. 131–154, 2003.
  18. [18] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust l1 tracker using accelerated proximal gradient approach,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1830–1837.
  19. [19] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking using adaptive correlation filters,” in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 2544–2550.
  20. [20] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting the circulant structure of tracking-by-detection with kernels,” in European Conference on Computer Vision, 2012, pp. 702–715.
  21. [21] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed tracking with kernelized correlation filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 3, p. 583, 2015.
  22. [22] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker with feature integration,” in European Conference on Computer Vision Workshop, 2014, pp. 254–265.
  23. [23] M. Danelljan, G. Häger, F. Khan, and M. Felsberg, “Accurate scale estimation for robust visual tracking,” in British Machine Vision Conference, 2014.
  24. [24] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1834–1848, 2015.
  25. [25] H. Li, C. Shen, and Q. Shi, “Real-time visual tracking using compressive sensing,” in IEEE Conference on Computer Vision and Pattern Recognition, 2011, pp. 1305–1312.
  26. [26] R. T. Collins, “Mean-shift blob tracking through scale space,” in IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 2003, pp. II–234.
  27. [27] J. H. Yoon, M.-H. Yang, and K.-J. Yoon, “Interacting multiview tracker,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 5, pp. 903–917, 2016.
  28. [28] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity-based collaborative model,” in IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 1838–1845.
  29. [29] S. Song and J. Xiao, “Tracking revisited using rgbd camera: Unified benchmark and baselines,” in IEEE International Conference on Computer Vision, 2013, pp. 233–240.
  30. [30] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer, “Adaptive color attributes for real-time visual tracking,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1090–1097.
  31. [31] J. H. Yoon, D. Y. Kim, and K.-J. Yoon, “Visual tracking via adaptive tracker selection with multiple features,” in European Conference on Computer Vision, 2012, pp. 28–41.
  32. [32] X. Lan, A. J. Ma, and P. C. Yuen, “Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation,” in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1194–1201.
  33. [33] D. Chen, Z. Yuan, G. Hua, Y. Wu, and N. Zheng, “Description-discrimination collaborative tracking,” in European Conference on Computer Vision, 2014, pp. 345–360.
  34. [34] P Li, D Wang, L Wang and H Lu. “Deep visual tracking: Review and experimental comparison,” in Pattern Recognition, 2018, pp. 323-338.
  35. [35] C Sun, D Wang, H Lu, MH Yang. “Correlation Tracking via Joint Discrimination and Reliability Learning,” in IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp.489-497.
  36. [36] C Sun, H Lu, MH Yang. “Learning spatial-aware regressions for visual tracking,” in IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp.8962-8970.
  37. [37] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. ehovin, T. Vojr, G. Hger, A. Lukei, and G. Fernndez. “The visual object tracking vot2016 challenge results,” In European Conference on Computer Vision Workshop, pp. 191–217, 2016.
  38. [38] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. ehovin, T. Vojr, G. Hger, A. Lukei, and G. Fernndez. “The visual object tracking vot2017 challenge results,” In IEEE International Conference on Computer Vision Workshop, 2017.
  39. [39] Danelljan, M., A. Robinson, Shahbaz Khan, F., and Felsberg, M. “Beyond correlation filters: Learning continuous convolution operators for visual tracking.” In European Conference on Computer Vision, pp.472–488, 2016.
  40. [40] Danelljan, M., Bhat, G., Shahbaz Khan, F., Felsberg, M.: “ECO: Efficient convolution operators for tracking.” In IEEE Conference on Computer Vision and Pattern Recognition, 2017.
  41. [41] OpenTLD. https://github.com/zk00006/OpenTLD
  42. [42] K Zhang, Y Fang, D Min, L Sun, S Yang, S Yan and Q Tian. “Cross-Scale Cost Aggregation for Stereo Matching.” in IEEE Conference on Computer Vision and Pattern Recognition. 2014.
  43. [43] Cong Y, Chen H, Gao B. “Real-time path tracking method using differential flatness for car-like mobile robot.” In International Journal of Robotics and Automation, vol. 33, no. 6, 2018
  44. [44] Mao S, Wu H, Lu M, et al. “Multiple 3d marker localization and tracking system in image-guided radiotherapy”. In International Journal of Robotics and Automation, vol. 32, no. 5, pp.517-523, 2017.

Important Links:

Go Back