MULTI-WAYPOINT-BASED PATH PLANNING FOR FREE-FLOATING SPACE ROBOTS

Suping Zhao, Bruno Siciliano, Zhanxia Zhu, Alejandro Gutierrez-Giles, and Jianjun Luo

References

  1. [1] L. Wang, & C. Luo, A hybrid genetic tabu search algorithm for mobile robot to solve AS/RS path planning, International Journal of Robotics and Automation, 33(2), 2018.
  2. [2] B. Hao, & Z. Yan, Recovery path planning for an agricultural mobile robot by Dubins-RRT* algorithm, International Journal of Robotics and Automation, 33(2), 2018.
  3. [3] L. Wang, C. Luo, M. Li, & J. Cai, Trajectory planning of an autonomous mobile robot by evolving ant colony system, International Journal of Robotics and Automation, 32(4), 2017, 406-413.
  4. [4] J. Ni, K. Wang, Q. Cao, Z. Khan, & X. Fan, A memetic algorithm with variable length chromosome for robot path planning under dynamic environments, International Journal of Robotics and Automation, 32(4), 2017.
  5. [5] P. Huang, Y. Xu, & B. Liang, Minimum-torque path planning of space robots using genetic algorithms, International Journal of Robotics and Automation, 21(3), 2006, 229-236.
  6. [6] X. Liu, H. Baoyin, & X. Ma, Optimal path planning of redundant free-floating revolute-jointed space manipulators with seven links, Multibody System Dynamics, 29(1), 2013, 41-56.
  7. [7] B. Siciliano, L. Sciavicco, L. Villani, & G. Oriolo, Robotics: modelling, planning and control. (London: Springer-Verlag, 2009).
  8. [8] B. Siciliano, & O. Khatib, Springer handbook of robotics. (Berlin: Springer-Verlag, 2008).
  9. [9] J. Zhang, H. Lv, D. He, L. Huang, Y. Dai, & Z. Zhang, Discrete bioinspired neural network for complete coverage path planning, International Journal of Robotics and Automation, 32(2), 2017.
  10. [10] L. Li, X. Wang, D. Xu, & M. Tan, An accurate path planning algorithm based on triangular meshes in robotic fibre placement, International Journal of Robotics and Automation, 32(1), 2017.
  11. [11] J. Craig, Introduction to robotics: mechanics and control. (NJ, USA, 2005).
  12. [12] H. Liu, Z. Cai Z, & Y. Wang, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Applied Soft Computing, 10(2), 2010, 629-640.
  13. [13] X. Zhao, A perturbed particle swarm algorithm for numerical optimization, Applied Soft Computing, 10(1),2010, 119-124.
  14. [14] P. Chauhan, K. Deep, & M. Pant, Novel inertia weight strategies for particle swarm optimization, Memetic Computing, 5(3), 2013, 229-251.
  15. [15] G. Reinelt, The traveling salesman: computational solutions for TSP applications. (Berlin: Springer-Verlag, 1994).
  16. [16] F. Caccavale, & B. Siciliano, Kinematic control of redundant free-floating robotic systems, Advanced Robotics, 15(4), 2001, 429-448.
  17. [17] S. Mirjalili, S. M. Mirjalili, & A. Hatamlou, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Computing and Applications, 27(2),2016, 495-513.
  18. [18] S. Saremi, S. Mirjalili, & A. Lewis, Grasshopper optimisation algorithm: theory and application. Advances in Engineering Software, 105, 2017, 30-47.
  19. [19] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Systems, 89, 2015, 228-249.

Important Links:

Go Back