MULTI-WAYPOINT-BASED PATH PLANNING FOR FREE-FLOATING SPACE ROBOTS

Suping Zhao, Bruno Siciliano, Zhanxia Zhu, Alejandro Gutierrez-Giles,and Jianjun Luo

References

  1. [1] L. Wang, & C. Luo, A hybrid genetic tabu search algorithmfor mobile robot to solve AS/RS path planning, InternationalJournal of Robotics and Automation, 33(2), 2018.
  2. [2] B. Hao, & Z. Yan, Recovery path planning for an agriculturalmobile robot by Dubins-RRT* algorithm, International Journalof Robotics and Automation, 33(2), 2018.
  3. [3] L. Wang, C. Luo, M. Li, & J. Cai, Trajectory planning of anautonomous mobile robot by evolving ant colony system, InternationalJournal of Robotics and Automation, 32(4), 2017,406-413.
  4. [4] J. Ni, K. Wang, Q. Cao, Z. Khan, & X. Fan, A memetic algorithmwith variable length chromosome for robot path planningunder dynamic environments, International Journal of Roboticsand Automation, 32(4), 2017.
  5. [5] P. Huang, Y. Xu, & B. Liang, Minimum-torque path planningof space robots using genetic algorithms, International Journalof Robotics and Automation, 21(3), 2006, 229-236.
  6. [6] X. Liu, H. Baoyin, & X. Ma, Optimal path planning of redundantfree-floating revolute-jointed space manipulators withseven links, Multibody System Dynamics, 29(1), 2013, 41-56.
  7. [7] B. Siciliano, L. Sciavicco, L. Villani, & G. Oriolo, Robotics:modelling, planning and control. (London: Springer-Verlag,2009).
  8. [8] B. Siciliano, & O. Khatib, Springer handbook of robotics.(Berlin: Springer-Verlag, 2008).
  9. [9] J. Zhang, H. Lv, D. He, L. Huang, Y. Dai, & Z. Zhang, Discrete bioinspired neural network for complete coverage path planning,International Journal of Robotics and Automation, 32(2),2017.
  10. [10] L. Li, X. Wang, D. Xu, & M. Tan, An accurate path planningalgorithm based on triangular meshes in robotic fibre placement,International Journal of Robotics and Automation, 32(1), 2017.
  11. [11] J. Craig, Introduction to robotics: mechanics and control.(NJ, USA, 2005).
  12. [12] H. Liu, Z. Cai Z, & Y. Wang, Hybridizing particle swarm optimizationwith differential evolution for constrained numericaland engineering optimization, Applied Soft Computing, 10(2),2010, 629-640.
  13. [13] X. Zhao, A perturbed particle swarm algorithm for numericaloptimization, Applied Soft Computing, 10(1),2010, 119-124.
  14. [14] P. Chauhan, K. Deep, & M. Pant, Novel inertia weight strategiesfor particle swarm optimization, Memetic Computing, 5(3),2013, 229-251.
  15. [15] G. Reinelt, The traveling salesman: computational solutionsfor TSP applications. (Berlin: Springer-Verlag, 1994).
  16. [16] F. Caccavale, & B. Siciliano, Kinematic control of redundantfree-floating robotic systems, Advanced Robotics, 15(4), 2001,429-448.
  17. [17] S. Mirjalili, S. M. Mirjalili, & A. Hatamlou, Multi-verse optimizer:a nature-inspired algorithm for global optimization, NeuralComputing and Applications, 27(2),2016, 495-513.
  18. [18] S. Saremi, S. Mirjalili, & A. Lewis, Grasshopper optimisationalgorithm: theory and application. Advances in EngineeringSoftware, 105, 2017, 30-47.
  19. [19] S. Mirjalili, Moth-flame optimization algorithm: A novelnature-inspired heuristic paradigm, Knowledge-Based Systems,89, 2015, 228-249.

Important Links:

Go Back