AN IMPROVED SPECTRAL CLUSTERING ALGORITHM FOR LARGE SCALE WIND FARM POWER PREDICTION

References

  1. [1] Dong L, Wang L, Khahro S F, et al. Wind power day ahead prediction with cluster analysis of NWP[J].Renewable & Sustainable Energy Reviews, 60, 2016: 12 06 1212.
  2. [2] Lu Y, Zhang T, Zeng Z, et al. An improved RBF neural network for short term load forecast in smartgrids[C]. I nternational conference on conceptual structures, 2016: 1 6.
  3. [3] Peng R, Sun H, Zanetti L, et al. Partitioning Well Clustered Graphs: Spectral Clustering Works![J].Conference on learning theory, 2017, 46(2): 1423 1455.
  4. [4] Yang Y, Wang Y, Xue X, et al. A novel spectral clustering method with superpixels for imagesegmentation[J]. Optik, 2016, 127(1): 161 167.
  5. [5] Zbib H, Mouysset S, St ute S, et al. Unsupervised Spectral Clustering for Segmentation of DynamicPET Images[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 840 850.
  6. [6] Dhillon I S. Co clustering documents and words using bipartite spectral graph partitioning[C].Knowledge Discovery and Data Mining, 2001: 269 274.
  7. [7] Mijangos V, Sierra G, Montes A, et al. Sentence level matrix representation for document spectralclustering[J]. Pattern Recognition Letters, 2017: 29 34.
  8. [8] Ding C H. Unsupervised feature selection via two way ordering in gene expression analysis[J].Bioinformatics, 2003, 19(10): 1259 1266.
  9. [9] Zang W, Jiang Z, Ren L, et al. Improved Spectral Clustering Based on Density Combining DNAGenetic Algorithm[J]. International Journal of Pattern Recognition and Art ificial Intelligence, 2017,31(04).
  10. [10] Ding F, Wang J, Ge J, et al. ADing F, Wang J, Ge J, et al. Anomaly Detection in Largenomaly Detection in Large--scale Trajectories Using Hybrid Grid scale Trajectories Using Hybrid Grid--based based Hierarchical Clustering Hierarchical Clustering[J]. [J]. International conference on robotics and automation, 2018, 33(5). International conference on robotics and automation, 2018, 33(5).
  11. [11] Langone R, SuykenLangone R, Suykens J A. Fast kernel spectral clustering[J]. Neurocomputing, 2017: 27s J A. Fast kernel spectral clustering[J]. Neurocomputing, 2017: 27--33.33.
  12. [12] Vora A, Raman S. Iterative spectral clustering for unsupervised object localization[J]. Pattern Vora A, Raman S. Iterative spectral clustering for unsupervised object localization[J]. Pattern Recognition Letters, 2018: Recognition Letters, 2018: 27--32.32.
  13. [13] Xu Y, Zhuang Z, Li W, et al. Effective commuXu Y, Zhuang Z, Li W, et al. Effective community division based on improved spectral clustering[J]. nity division based on improved spectral clustering[J]. Neurocomputing, 2017: 54--62.
  14. [14] Yu R, Gao J, Yu M, et al. LSTMYu R, Gao J, Yu M, et al. LSTM--EFG for wind power forecasting based on sequential correlation EFG for wind power forecasting based on sequential correlation features[J]. Future Generation Computer Systems, 2019: 33--42.42.
  15. [15] M. Fiedler, Czechoslovak, Mathematical Journal, 23(23) 1973:298-305.
  16. [16] Perona P, Freeman W T. A Factorization Approach to Grouping[J]. European conference on computer Perona P, Freeman W T. A Factorization Approach to Grouping[J]. European conference on computer vision, 1998: 655vision, 1998: 655--670.[1[177] ] Shi J, Malik J. Normalized cuShi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis ts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888and Machine Intelligence, 2000, 22(8): 888--905.905.[18][18] Ng A Y, Jordan M I, Weiss Y, et al. On Spectral Clustering: Analysis and an Ng A Y, Jordan M I, Weiss Y, et al. On Spectral Clustering: Analysis and an AAlgorithm[C]. lgorithm[C]. NNeural eural IInformation nformation PProcessing rocessing SSystems, 2001: ystems, 2001: 849849--856.856.[19][19] Meila M, Shi J. Learning Segmentation by Random Walks[C]. Meila M, Shi J. Learning Segmentation by Random Walks[C]. NNeural eural IInformation nformation PProcessing rocessing SSystems, 2000: 873ystems, 2000: 873--879.879.[20] Dietterich T G[20] Dietterich T G.. Machine Learning Machine Learning RResearch: Four Current Directionsesearch: Four Current Directions..AI MagazineAI Magazine,, 19971997,, 18(4): 18(4):249797--136136[2[211] ] Sun Z, Bebis G, Miller R, et al. Object detection using feature subset selection[J]. Pattern Recognition, Sun Z, Bebis G, Miller R, et al. Object detection using feature subset selection[J]. Pattern Recognition, 2004, 37(11): 21652004, 37(11): 2165--2176.2176.[22][22] Zhao F, Jiao L, Liu H, et al.Zhao F, Jiao L, Liu H, et al. Spectral clustering with eigenvector selection based on entropy Spectral clustering with eigenvector selection based on entropy ranking[J]. Neurocomputing, 2010, 73(10): 1704ranking[J]. Neurocomputing, 2010, 73(10): 1704--1717.1717.[2[233] ] Rebagliati N, Verri A. Spectral clustering with more than K eigenvectors[J]. Neurocomputing, 2011, Rebagliati N, Verri A. Spectral clustering with more than K eigenvectors[J]. Neurocomputing, 2011, 74(9): 139174(9): 1391--1401.1401.[24][24] Yang X, DebYang X, Deb S. Cuckoo Search via Lévy flights[J]. S. Cuckoo Search via Lévy flights[J]. NNature and ature and BBiologically iologically IInspired nspired CComputing, omputing, 2009: 2102009: 210--214.214.[25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository,[25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository, http://www.ics.uci.edu/~mlearn/MLRepository.html.http://www.ics.uci.edu/~mlearn/MLRepository.html.[26][26] Chang H, Yeung D Y. Robust pathChang H, Yeung D Y. Robust path--based based spectral clustering[J]. Pattern Recognition, 2008, 41(1): spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191191--203.203.[27][1] Dong L, Wang L, Khahro S F, et al. Wind power day-ahead prediction with cluster analysis of NWP[J]. Renewable & Sustainable Energy Reviews, 60, 2016: 1206-1212. [2] Lu Y, Zhang T, Zeng Z, et al. An improved RBF neural network for short-term load forecast in smart grids[C]. International conference on conceptual structures, 2016: 1-6. [3] Peng R, Sun H, Zanetti L, et al. Partitioning Well-Clustered Graphs: Spectral Clustering Works![J]. Conference on learning theory, 2017, 46(2): 1423-1455. [4] Yang Y, Wang Y, Xue X, et al. A novel spectral clustering method with superpixels for image segmentation[J]. Optik, 2016, 127(1): 161-167. [5] Zbib H, Mouysset S, Stute S, et al. Unsupervised Spectral Clustering for Segmentation of Dynamic PET Images[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 840-850. [6] Dhillon I S. Co-clustering documents and words using bipartite spectral graph partitioning[C]. Knowledge Discovery and Data Mining, 2001: 269-274. [7] Mijangos V, Sierra G, Montes A, et al. Sentence level matrix representation for document spectral clustering[J]. Pattern Recognition Letters, 2017: 29-34. [8] Ding C H. Unsupervised feature selection via two-way ordering in gene expression analysis[J]. Bioinformatics, 2003, 19(10): 1259-1266. [9] Zang W, Jiang Z, Ren L, et al. Improved Spectral Clustering Based on Density Combining DNA Genetic Algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(04). 23 [10] Ding F, Wang J, Ge J, et al. Anomaly Detection in Large-scale Trajectories Using Hybrid Grid-based Hierarchical Clustering[J]. International conference on robotics and automation, 2018, 33(5). [11] Langone R, Suykens J A. Fast kernel spectral clustering[J]. Neurocomputing, 2017: 27-33. [12] Vora A, Raman S. Iterative spectral clustering for unsupervised object localization[J]. Pattern Recognition Letters, 2018: 27-32. [13] Xu Y, Zhuang Z, Li W, et al. Effective community division based on improved spectral clustering[J]. Neurocomputing, 2017: 54-62. [14] Yu R, Gao J, Yu M, et al. LSTM-EFG for wind power forecasting based on sequential correlation features[J]. Future Generation Computer Systems, 2019: 33-42. [15] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Mathematical Journal, 23(23), 1973:298-305. [16] Perona P, Freeman W T. A Factorization Approach to Grouping[J]. European conference on computer vision, 1998: 655-670.
  17. [18][18] Ng A Y, Jordan M I, Weiss Y, et al. On Spectral Clustering: Analysis and an Ng A Y, Jordan M I, Weiss Y, et al. On Spectral Clustering: Analysis and an AAlgorithm[C]. lgorithm[C]. NNeural eural IInformation nformation PProcessing rocessing SSystems, 2001: ystems, 2001: 849849--856.856.
  18. [19][19] Meila M, Shi J. Learning Segmentation by Random Walks[C]. Meila M, Shi J. Learning Segmentation by Random Walks[C]. NNeural eural IInformation nformation PProcessing rocessing SSystems, 2000: 873ystems, 2000: 873--879.879.
  19. [20] Dietterich T G[20] Dietterich T G.. Machine Learning Machine Learning RResearch: Four Current Directionsesearch: Four Current Directions..AI MagazineAI Magazine,, 19971997,, 18(4): 18(4):249797--136136[2[211] ] Sun Z, Bebis G, Miller R, et al. Object detection using feature subset selection[J]. Pattern Recognition, Sun Z, Bebis G, Miller R, et al. Object detection using feature subset selection[J]. Pattern Recognition, 2004, 37(11): 21652004, 37(11): 2165--2176.2176.[22][22] Zhao F, Jiao L, Liu H, et al.Zhao F, Jiao L, Liu H, et al. Spectral clustering with eigenvector selection based on entropy Spectral clustering with eigenvector selection based on entropy ranking[J]. Neurocomputing, 2010, 73(10): 1704ranking[J]. Neurocomputing, 2010, 73(10): 1704--1717.1717.[2[233] ] Rebagliati N, Verri A. Spectral clustering with more than K eigenvectors[J]. Neurocomputing, 2011, Rebagliati N, Verri A. Spectral clustering with more than K eigenvectors[J]. Neurocomputing, 2011, 74(9): 139174(9): 1391--1401.1401.[24][24] Yang X, DebYang X, Deb S. Cuckoo Search via Lévy flights[J]. S. Cuckoo Search via Lévy flights[J]. NNature and ature and BBiologically iologically IInspired nspired CComputing, omputing, 2009: 2102009: 210--214.214.[25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository,[25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository, http://www.ics.uci.edu/~mlearn/MLRepository.html.http://www.ics.uci.edu/~mlearn/MLRepository.html.[26][26] Chang H, Yeung D Y. Robust pathChang H, Yeung D Y. Robust path--based based spectral clustering[J]. Pattern Recognition, 2008, 41(1): spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191191--203.203.[27][1] Dong L, Wang L, Khahro S F, et al. Wind power day-ahead prediction with cluster analysis of NWP[J]. Renewable & Sustainable Energy Reviews, 60, 2016: 1206-1212. [2] Lu Y, Zhang T, Zeng Z, et al. An improved RBF neural network for short-term load forecast in smart grids[C]. International conference on conceptual structures, 2016: 1-6. [3] Peng R, Sun H, Zanetti L, et al. Partitioning Well-Clustered Graphs: Spectral Clustering Works![J]. Conference on learning theory, 2017, 46(2): 1423-1455. [4] Yang Y, Wang Y, Xue X, et al. A novel spectral clustering method with superpixels for image segmentation[J]. Optik, 2016, 127(1): 161-167. [5] Zbib H, Mouysset S, Stute S, et al. Unsupervised Spectral Clustering for Segmentation of Dynamic PET Images[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 840-850. [6] Dhillon I S. Co-clustering documents and words using bipartite spectral graph partitioning[C]. Knowledge Discovery and Data Mining, 2001: 269-274. [7] Mijangos V, Sierra G, Montes A, et al. Sentence level matrix representation for document spectral clustering[J]. Pattern Recognition Letters, 2017: 29-34. [8] Ding C H. Unsupervised feature selection via two-way ordering in gene expression analysis[J]. Bioinformatics, 2003, 19(10): 1259-1266. [9] Zang W, Jiang Z, Ren L, et al. Improved Spectral Clustering Based on Density Combining DNA Genetic Algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(04). 23 [10] Ding F, Wang J, Ge J, et al. Anomaly Detection in Large-scale Trajectories Using Hybrid Grid-based Hierarchical Clustering[J]. International conference on robotics and automation, 2018, 33(5). [11] Langone R, Suykens J A. Fast kernel spectral clustering[J]. Neurocomputing, 2017: 27-33. [12] Vora A, Raman S. Iterative spectral clustering for unsupervised object localization[J]. Pattern Recognition Letters, 2018: 27-32. [13] Xu Y, Zhuang Z, Li W, et al. Effective community division based on improved spectral clustering[J]. Neurocomputing, 2017: 54-62. [14] Yu R, Gao J, Yu M, et al. LSTM-EFG for wind power forecasting based on sequential correlation features[J]. Future Generation Computer Systems, 2019: 33-42. [15] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Mathematical Journal, 23(23), 1973:298-305. [16] Perona P, Freeman W T. A Factorization Approach to Grouping[J]. European conference on computer vision, 1998: 655-670. [17] Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. [18] Ng A Y, Jordan M I, Weiss Y, et al. On Spectral Clustering: Analysis and an Algorithm[C]. Neural Information Processing Systems, 2001: 849-856. [19] Meila M, Shi J. Learning Segmentation by Random Walks[C]. Neural Information Processing Systems, 2000: 873-879. [20] Dietterich T G. Machine Learning Research: Four Current Directions.AI Magazine, 1997, 18(4):97-136
  20. [22][22] Zhao F, Jiao L, Liu H, et al.Zhao F, Jiao L, Liu H, et al. Spectral clustering with eigenvector selection based on entropy Spectral clustering with eigenvector selection based on entropy ranking[J]. Neurocomputing, 2010, 73(10): 1704ranking[J]. Neurocomputing, 2010, 73(10): 1704--1717.1717.[2[233] ] Rebagliati N, Verri A. Spectral clustering with more than K eigenvectors[J]. Neurocomputing, 2011, Rebagliati N, Verri A. Spectral clustering with more than K eigenvectors[J]. Neurocomputing, 2011, 74(9): 139174(9): 1391--1401.1401.[24][24] Yang X, DebYang X, Deb S. Cuckoo Search via Lévy flights[J]. S. Cuckoo Search via Lévy flights[J]. NNature and ature and BBiologically iologically IInspired nspired CComputing, omputing, 2009: 2102009: 210--214.214.[25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository,[25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository, http://www.ics.uci.edu/~mlearn/MLRepository.html.http://www.ics.uci.edu/~mlearn/MLRepository.html.[26][26] Chang H, Yeung D Y. Robust pathChang H, Yeung D Y. Robust path--based based spectral clustering[J]. Pattern Recognition, 2008, 41(1): spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191191--203.203.[27][1] Dong L, Wang L, Khahro S F, et al. Wind power day-ahead prediction with cluster analysis of NWP[J]. Renewable & Sustainable Energy Reviews, 60, 2016: 1206-1212. [2] Lu Y, Zhang T, Zeng Z, et al. An improved RBF neural network for short-term load forecast in smart grids[C]. International conference on conceptual structures, 2016: 1-6. [3] Peng R, Sun H, Zanetti L, et al. Partitioning Well-Clustered Graphs: Spectral Clustering Works![J]. Conference on learning theory, 2017, 46(2): 1423-1455. [4] Yang Y, Wang Y, Xue X, et al. A novel spectral clustering method with superpixels for image segmentation[J]. Optik, 2016, 127(1): 161-167. [5] Zbib H, Mouysset S, Stute S, et al. Unsupervised Spectral Clustering for Segmentation of Dynamic PET Images[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 840-850. [6] Dhillon I S. Co-clustering documents and words using bipartite spectral graph partitioning[C]. Knowledge Discovery and Data Mining, 2001: 269-274. [7] Mijangos V, Sierra G, Montes A, et al. Sentence level matrix representation for document spectral clustering[J]. Pattern Recognition Letters, 2017: 29-34. [8] Ding C H. Unsupervised feature selection via two-way ordering in gene expression analysis[J]. Bioinformatics, 2003, 19(10): 1259-1266. [9] Zang W, Jiang Z, Ren L, et al. Improved Spectral Clustering Based on Density Combining DNA Genetic Algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(04). 23 [10] Ding F, Wang J, Ge J, et al. Anomaly Detection in Large-scale Trajectories Using Hybrid Grid-based Hierarchical Clustering[J]. International conference on robotics and automation, 2018, 33(5). [11] Langone R, Suykens J A. Fast kernel spectral clustering[J]. Neurocomputing, 2017: 27-33. [12] Vora A, Raman S. Iterative spectral clustering for unsupervised object localization[J]. Pattern Recognition Letters, 2018: 27-32. [13] Xu Y, Zhuang Z, Li W, et al. Effective community division based on improved spectral clustering[J]. Neurocomputing, 2017: 54-62. [14] Yu R, Gao J, Yu M, et al. LSTM-EFG for wind power forecasting based on sequential correlation features[J]. Future Generation Computer Systems, 2019: 33-42. [15] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Mathematical Journal, 23(23), 1973:298-305. [16] Perona P, Freeman W T. A Factorization Approach to Grouping[J]. European conference on computer vision, 1998: 655-670. [17] Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. [18] Ng A Y, Jordan M I, Weiss Y, et al. On Spectral Clustering: Analysis and an Algorithm[C]. Neural Information Processing Systems, 2001: 849-856. [19] Meila M, Shi J. Learning Segmentation by Random Walks[C]. Neural Information Processing Systems, 2000: 873-879. [20] Dietterich T G. Machine Learning Research: Four Current Directions.AI Magazine, 1997, 18(4):97-136 [21] Sun Z, Bebis G, Miller R, et al. Object detection using feature subset selection[J]. Pattern Recognition, 2004, 37(11): 2165-2176. [22] Zhao F, Jiao L, Liu H, et al. Spectral clustering with eigenvector selection based on entropy ranking[J]. Neurocomputing, 2010, 73(10): 1704-1717.
  21. [24][24] Yang X, DebYang X, Deb S. Cuckoo Search via Lévy flights[J]. S. Cuckoo Search via Lévy flights[J]. NNature and ature and BBiologically iologically IInspired nspired CComputing, omputing, 2009: 2102009: 210--214.214.
  22. [25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository,[25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository, http://www.ics.uci.edu/~mlearn/MLRepository.html.http://www.ics.uci.edu/~mlearn/MLRepository.html.
  23. [26][26] Chang H, Yeung D Y. Robust pathChang H, Yeung D Y. Robust path--based based spectral clustering[J]. Pattern Recognition, 2008, 41(1): spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191191--203.203.
  24. [27][1] Dong L, Wang L, Khahro S F, et al. Wind power day-ahead prediction with cluster analysis of NWP[J]. Renewable & Sustainable Energy Reviews, 60, 2016: 1206-1212. [2] Lu Y, Zhang T, Zeng Z, et al. An improved RBF neural network for short-term load forecast in smart grids[C]. International conference on conceptual structures, 2016: 1-6. [3] Peng R, Sun H, Zanetti L, et al. Partitioning Well-Clustered Graphs: Spectral Clustering Works![J]. Conference on learning theory, 2017, 46(2): 1423-1455. [4] Yang Y, Wang Y, Xue X, et al. A novel spectral clustering method with superpixels for image segmentation[J]. Optik, 2016, 127(1): 161-167. [5] Zbib H, Mouysset S, Stute S, et al. Unsupervised Spectral Clustering for Segmentation of Dynamic PET Images[J]. IEEE Transactions on Nuclear Science, 2015, 62(3): 840-850. [6] Dhillon I S. Co-clustering documents and words using bipartite spectral graph partitioning[C]. Knowledge Discovery and Data Mining, 2001: 269-274. [7] Mijangos V, Sierra G, Montes A, et al. Sentence level matrix representation for document spectral clustering[J]. Pattern Recognition Letters, 2017: 29-34. [8] Ding C H. Unsupervised feature selection via two-way ordering in gene expression analysis[J]. Bioinformatics, 2003, 19(10): 1259-1266. [9] Zang W, Jiang Z, Ren L, et al. Improved Spectral Clustering Based on Density Combining DNA Genetic Algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(04). 23 [10] Ding F, Wang J, Ge J, et al. Anomaly Detection in Large-scale Trajectories Using Hybrid Grid-based Hierarchical Clustering[J]. International conference on robotics and automation, 2018, 33(5). [11] Langone R, Suykens J A. Fast kernel spectral clustering[J]. Neurocomputing, 2017: 27-33. [12] Vora A, Raman S. Iterative spectral clustering for unsupervised object localization[J]. Pattern Recognition Letters, 2018: 27-32. [13] Xu Y, Zhuang Z, Li W, et al. Effective community division based on improved spectral clustering[J]. Neurocomputing, 2017: 54-62. [14] Yu R, Gao J, Yu M, et al. LSTM-EFG for wind power forecasting based on sequential correlation features[J]. Future Generation Computer Systems, 2019: 33-42. [15] M. Fiedler, Algebraic Connectivity of Graphs, Czechoslovak Mathematical Journal, 23(23), 1973:298-305. [16] Perona P, Freeman W T. A Factorization Approach to Grouping[J]. European conference on computer vision, 1998: 655-670. [17] Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905. [18] Ng A Y, Jordan M I, Weiss Y, et al. On Spectral Clustering: Analysis and an Algorithm[C]. Neural Information Processing Systems, 2001: 849-856. [19] Meila M, Shi J. Learning Segmentation by Random Walks[C]. Neural Information Processing Systems, 2000: 873-879. [20] Dietterich T G. Machine Learning Research: Four Current Directions.AI Magazine, 1997, 18(4):97-136 [21] Sun Z, Bebis G, Miller R, et al. Object detection using feature subset selection[J]. Pattern Recognition, 2004, 37(11): 2165-2176. [22] Zhao F, Jiao L, Liu H, et al. Spectral clustering with eigenvector selection based on entropy ranking[J]. Neurocomputing, 2010, 73(10): 1704-1717. [23] Rebagliati N, Verri A. Spectral clustering with more than K eigenvectors[J]. Neurocomputing, 2011, 74(9): 1391-1401. [24] Yang X, Deb S. Cuckoo Search via Lévy flights[J]. Nature and Biologically Inspired Computing, 2009: 210-214. [25] A. Asuncion, D.J. Newman, UCI Machine Learning Respository, http://www.ics.uci.edu/~mlearn/MLRepository.html. [26] Chang H, Yeung D Y. Robust path-based spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191-203. [27] Wu M, Scholkopf B. A Local Learning Approach for Clustering[C]. Neural Information Processing Systems, 2006: 1529-1536.
  25. [28] Mantegna R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes[J]. Physical Review E, 1994, 49(5): 4677-4683[28][28] Mantegna R N. Fast, accurate algorithm for numerical simula Mantegna R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastiction of Lévy stable stochastic processes[J]. Physical Review E, 1994, 49(5): 4677 processes[J]. Physical Review E, 1994, 49(5): 4677--4683.4683.

Important Links:

Go Back