DESIGN AND IMPLEMENTATION OF THE VISUAL DETECTION SYSTEM FOR AMPHIBIOUS ROBOTS

Yanlin He, Lianqing Zhu, Guangkai Sun, and Junfei Qiao

References

  1. [1] J. Fabian, T. Young, J.C. Peyton Jones, G.M. Clayton, “Integrating the microsoft kinect with simulink: Real-time target tracking example”, IEEE/ASME Trans. Mechatron, Vol. 19, No. 1, pp. 249-257, Feb. 2014.
  2. [2] O. Araar, N. Aouf, J.L. Vallejo Dietz, “Power pylon detection and monocular depth estimation from detection UAVs”, Industrial Robot-an International Journal, Vol. 42, No. 3, pp. 200-213, 2015.
  3. [3] Z. Zhang, A. Beck, N. Magnenat-Thalmann, “Human-Like Behavior Generation Based on Head-Arms Model for Robot Tracking External Targets and Body Parts”, Proc. IEEE Trans. Cybernetics, Vol .45, No. 8, pp. 1390-1400, Aug. 2015.
  4. [4] E. Wirbel, B. Steux, S. Bonnabel, D.L.F. Arnaud, “Humanoid robot navigation: From a visual SLAM to a visual compass”, Proc. IEEE Int. Conf. Networking, Sensing and Control, Evry, France, 10-12 April 2013, pp. 678-683.
  5. [5] A. Delibasi, E. Zergeroglu, I. B. Küçükdemiral, G. Cansever, “Adaptive Self-Tuning Control of Robot Manipulators with Periodic Disturbance Estimation”, International Journal of Robotics & Automation, 25(1), 2010, 48-56.
  6. [6] F. Zhang, S. Zheng, H. Yun, X. Shao, “The research on attitude correction method of robot monocular vision positioning system”, IEEE Proc. IEEE Int. Conf. Robotics and Biomimetics. Macau SAR, China, December 5-8 2017, pp. 1972-1976.
  7. [7] X. Huang, Y. Jia, S. Xu, “Path planning of a free-floating space robot based on the degree of controllability”, Science China Technological Sciences, Vol .60, No.2, pp. 1-13, 2017.
  8. [8] L. Li, X. Wang, D. Xu, T.Min, “An accurate path planning algorithm based on triangular meshes in robotic fibre placement”, International Journal of Robotics & Automation, 2017, 32(1).
  9. [9] C. J. Lin, “A GPU-Based Evolution Algorithm for Motion Planning of a Redundant Robot”, International Journal of Robotics & Automation, 2(2), 2017.
  10. [10] F. Castelli, S. Michieletto, S. Ghidoni, E. Pagello, “A machine learning-based visual servoing approach for fast robot control in industrial setting”, Vol .16, No. 6, pp. 172988141773888, 2017.
  11. [11] S. Lemaignan, M. Warnier, E. A. Sisbot, A. Clodic , R. Alamiet, “Artificial cognition for social humanrobot interaction”, Artificial Intelligence, Vol .247, No. C, pp. 45-69, 2017.
  12. [12] C.A. Cifuentes, A. Frizera, R. Carelli, T. Bastos, “Human-robot interaction based on wearable IMU sensor and laser range finder”, Robotics and autonomous systems, Vol. 62, No. 10, pp. 1425-1439, Oct. 2014.
  13. [13] K. Kesorn, S. Poslad, “An Enhanced Bag-of-Visual Word Vector Space Model to Represent Visual Content in Athletics Images”, IEEE Trans. Multimedia, Vol.14, No.1, pp. 211-222, Feb. 2012.
  14. [14] Y. Liu, Q. Li, H. Fang, H. Xu, “Research on embedded system with implementation of a moving target tracking algorithm based on improved meanshift on DM6437”, Advanced Materials Research, Vol. 1003, pp. 207-210, Jul. 2014.
  15. [15] J. Liu, K.R. Subramanian, T.S. Yoo, “An optical flow approach to tracking colonoscopy video”, Computerized Medical Imaging and Graphics, Vol.37, No.3, pp. 207-223, Apr. 2013.
  16. [16] K. Li, B. Hu, J. Gao, G. Feng, “Nonlinear robust detection Kalman filter algorithm based on M-estimation”, Journal of Computer Applications, Vol. 34, No. 11, pp. 3214-3217, Apr. 2014.
  17. [17] S. Shamshirband, D. Petkovic, H. Javidnia, A. Gani, “Sensor Data Fusion by Support Vector Regression Methodology-A Comparative Study”, IEEE Sensors Journal, Vol. 15, No. 2, pp. 850-854, Feb. 2015.
  18. [18] X. Chen, J. Wu, “Scalable compressive tracking based on motion”, Pro. IEEE Int. Conf. Robotics and Biomimetics (ROBIO), Shenzhen, 12-14 December 2013, pp. 504-509.
  19. [19] Y. Qi, K. Suzuki, H. Wu, Q. Chen, “EK-means tracker: A pixel-wise tracking algorithm using kinect”, Pro. Third Chinese. Conf. Intelligent Visual Surveillance (IVS), Beijing, 1-2 December 2011, pp. 77–80.
  20. [20] C. Bibby, I. Reid, “Real-time Tracking of Multiple Occluding targets using Level Sets”, Pro. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, 13-18 June 2010, pp. 1307-1314.
  21. [21] S. Hare, A. Saffari, H.S. Torr Philip, “Struck: Structured Output Tracking with Kernels”, Pro. IEEE Int. Conf. Computer Vision (ICCV), Barcelona, SPAIN, 06-13 November 2011, pp. 263-270.
  22. [22] Z. Kalal, K. Mikolajczyk, J. Matas, “Tracking-Learning-Detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 34, No.7, pp. 1409-1422, Jul. 2012.
  23. [23] K. Zhang, L. Zhang, M.-H. Yang, “Real-Time Compressive Tracking”, Pro. European. Conf. Computer Vision (ECCV 2012), Florence, Italy, 7-13 October 2012, pp. 864–877.
  24. [24] M. Yahya, M. Arshad, “Tracking of multiple light sources using computer vision for underwater docking”. Procedia Comput. Vol.76, pp. 192-197, 2015.
  25. [25] L. Zhang, B. He, Y. Song, T. Yan, “Consistent target tracking via multiple underwater cameras”. Pro. OCEANS 2016 - Shanghai, Shanghai, China, pp. 10-13, 2016.
  26. [26] M. Chuang, J. Hwang, J. Ye, S. Huang, K. Williams, “Underwater Fish Tracking for Moving Cameras Based on Deformable Multiple Kernels”. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol.47, No.9, pp. 2467-2477, 2017.
  27. [27] S. Pan, L. Shi, S. Guo, “A Kinect-Based Real-Time Compressive Tracking Prototype System for Amphibious Spherical Robots”, SENSORS, Vol .15, No. 4, pp. 8232-8252, Apr. 2015.
  28. [28] K. Wang, Y. Liu, L. Li, “Visual servoing based trajectory tracking of underactuated water surface robots without direct position measurement”, IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Chicago. IL, USA, 14-18 September 2014, pp. 767–772.
  29. [29] X. Cheng, N. Li, T. Zhou, L. Zhou, Z. Wu, “Object tracking via collaborative multi-task learning and appearance model updating”, Applied Soft Computing, Vol. 31, pp. 81-89, Jun. 2015.
  30. [30] Y. Li, S. Guo, C. Yue, “Preliminary Concept of a Novel Spherical Underwater Robot”, International Journal of Mechatronics and Automation, Vol.5, No.1, pp11-21, 2015.
  31. [31] L. Shi, S. Guo, S. Mao, C. Yue, M. Li, K. Asaka, “Development of an Amphibious Turtle-Inspired Spherical Mother Robot”, Journal of Bionic Engineering, Vol.10, No.4, pp. 446-455, 2013.
  32. [32] L. Shi, Y. He, S. Guo, “Skating Motion Analysis of the Amphibious Quadruped Mother Robot”, Pro. IEEE Int. Conf. Mechatronics and Automation, Takamatsu, 4-7 August 2013, pp. 1749-1754.
  33. [33] C. Yue, S. Guo, M. Li, Y. Li, Hideyuki Hirata, Hidenori Ishihara, “Mechantronic System and Experiments of a Spherical Underwater Robot: SUR-II”, Journal of Intelligent and Robotic Systems, DOI: 10.1007/s10846-015-0177-3 2015.
  34. [34] Q. Fu, S. Guo, Y. Yamauchi, H. Hirata, H. Ishihara “A Novel Hybrid Microrobot using Rotational Magnetic Field for Medical Applications”, Biomedical Microdevices, Vol.17 No.2, DOI: 10.1007/s10544-015-9942-0, 2015
  35. [35] C. Yue, S. Guo, L. Shi, “Design and Performance Evaluation of a Biomimetic Microrobot for the Father-son Underwater Intervention Robotic System”, Microsystem Technologies, Vol.22, No.4, pp. 831-841, 2016.
  36. [36] Y. He, S. Guo, L. Shi, S. Pan, Z. Wang, “3D Printing Technology-based an Amphibious Spherical Underwater Robot”, Pro. Of 2014 IEEE Int. Conf. Mechatronics and Automation, pp. 1382-1387, 2014.
  37. [37] Y. He, L. Shi, S. Guo, S. Pan, Z. Wang, “Preliminary mechanical analysis of an improved amphibious spherical father robot”, Microsystem Technologies, pp. 1-16, DOI: 10.1007/s 00542-015-2504-9, 2015.
  38. [38] S. Pan, S. Guo, L. Shi, Y. He, Z. Wang, Q. Huang, “A Spherical Robot based on all Programmable SoC and 3-D Printing”, Pro. of 2014 IEEE Int. Conf. Mechatronics and Automation, pp. 150-155, 2015.
  39. [39] S. Guo, Y. He, L. Shi, S. Pan, K. Tang, R. Xiao, P. Guo, “Modal and fatigue analysis of critical components of an amphibious spherical robot”, Microsystem Technologies, doi: 10.1007/s00542-016-3083-0, pp.1-15, 2016.
  40. [40] S. Guo, Y. He, L. Shi, S. Pan, R. Xiao, K. Tang, P. Guo. “Modeling and experimental evaluation of an improved amphibious robot with compact structure”. Robotics and Computer-Integrated Manufacturing”, vol.51, pp. 37-52, 2018.
  41. [41] X. Zhou, Q. Qian, Y. Ye, C. Wang, “Improved TLD visual target tracking algorithm”, Journal of Image and Graphics, Vol.18, No.9, pp. 1115-1123, 2013.
  42. [42] T. Xu, C. Huang, Q. He Q, G. Guang, Y. Zhang, “An improved TLD target tracking algorithm”, IEEE International Conference on Information and Automation, pp. 2051-2055, 2017.
  43. [43] M. Cheng, Z. Zhang, W. Lin, P. Torr, “Binarized Normed Gradients for targetness Estimation at 300fps”, Pro. IEEE Conf. Computer Vision & Pattern Recognition, Columbus, Ohio, USA, 23-28 June 2014, pp. 3286 - 3293.
  44. [44] B. Alexe, T. Deselaers, V. Ferrari, “Measuring the objectness of image windows”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.34, No.11, pp. 2189-2202, Nov. 2012.
  45. [45] S. Cheng, Y. Cao, J. Sun, G. Liu, G. Han, “Efficient target tracking by TLD based on binary normed gradients”, Optics and Precision Engineering, Vol.23, No.8, pp. 2339-2348, Aug. 2015.
  46. [46] K. Zhang, L. Zhang, M. Yang, “Fast Compressive Tracking”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 36, No. 10, pp. 2002-2015, Oct. 2014.

Important Links:

Go Back