VISION-BASED MOBILE ROBOT LEADER-FOLLOWER CONTROL USING MODEL PREDICTIVE CONTROL

Tongying Guo, Haichen Wang, Yong Liu, Ming Li, and Ying Wang

References

  1. [1] R. M. Murray, “Recent research in cooperative control of multivehicle systems,”International Journal of Dynamic System, Measurement, and Control, Vol.129, No.5, pp.571-583, 2007.
  2. [2] K. Krishnamoorthy, D. Casbeer, P. Chandler, M.Pachter, and S. Darbha, “UAV search& capture of a moving ground target under delayed information,” IEEE Conference onDecision and Control (CDC), Maui, Hawaii, December 2012.
  3. [3] A. M. Samad, N. Kamarulzaman, M. A. Hamdani, T. A. Mastor, and K. A. Hashim,“The potential of unmanned aerial vehicle (UAV) for civilian and mapping application,”IEEE International Conference on System Engineering and Technology (ICSET), ShahAlam, Malaysia, August 2013.DOI: 10.2316/J.2019.206-0231
  4. [4] N. Basilico, N. Gatti, F. Amigoni, “Leader-follower strategies for robotic patrolling inenvironments with arbitrary topologies,” The 8th International Conference onAutonomous Agents and Multiagent Systems, 2009.
  5. [5] R.D. Cruz-Morales, M. Velasco-Villa, R. Castro-Linares, and E.R.Palacios-Hernandez, “Leader-Follower Formation for Nonholonomic Mobile Robots:Discrete-Time Approach,” International Journal of Advanced Robotic Systems, Vol.13,No.2, pp.1-12, 2017.
  6. [6] Y. Dai and S. Lee, “The leader-follower formation control of nonholonomic mobilerobots,” International Journal of Control, Automation and Systems, Vol.10 No.2, pp.350–361, 2012.
  7. [7] A. Gopalakrishnan, S. Greene, and A. Sekmen, “Vision-based mobile robot learningand navigation,” IEEE International Workshop on Robot and Human InteractiveCommunication, 2005.
  8. [8] H.J. Min, A. Drenner, and N. Papanikolopoulos, “Vision-based leader-followerformations with limited information,” IEEE International Conference on Robotics andAutomation, 2009.
  9. [9] G.L. Mariottini, F. Morbidi, D. Prattichizzo, N.V. Valk, N. Michael, G. Pappas, andK.Daniilidis, “Vision-based localization for leader-follower formation control”. IEEETransactions on Robotics, Vol.25, No.6, pp. 1431–1438, 2009.
  10. [10] H.G. Tanner, G.J. Pappas, and V. Kumar, “Leader-to-formation stability”. IEEETransactions on Robotics and Automation, Vol.20, No.3, pp.443–455, 2004.
  11. [11] X. Chen and Y. Jia, “Adaptive leader-follower formation control of non-holonomicmobile robots using active vision,” Control Theory Applications, Vol.9, No.8, pp.DOI: 10.2316/J.2019.206-02311302–1311, 2015.
  12. [12] H.J. Min and N. Papanikolopoulos, “Robot formations using a single camera andentropy-based segmentation,” Journal of Intelligent & Robotic Systems, Vol.68, No.1, pp.21-41, 2012.
  13. [13] A. EI-Sayed and B. Ibrahim, “Decentralized non-linear control of leader-followerformation of multiple autonomous mobile robots,” International Journal of AppliedEngineering Research, Vol.11, No.9, pp. 6583-6590, 2016.
  14. [14] G. Sequeira, “Vision based leader-follower formation control for mobile robots,”MasterThesis of Missouri University of Science and Technology, 2007.
  15. [15] C.S. Hooi, W. Zhao, and G.T. Hiong, “Swarming coordination with robust controlLyapunov function approach,” Journal of Intelligent and Robotic Systems: Theory andApplications, Vol.78, No.(3-4), pp. 499-515, 2015.
  16. [16] G. Wen, Y. Zhao, Z. Duan, W. Yu, and G. Chen, “Containment of higher-ordermulti-leader multi-agent systems: A dynamic output approach,” IEEE Transactions onAutomatic Control, Vol.61, No.4, pp. 1135-1140, 2016.
  17. [17]M. Hofmeister, K. Kanjanawanishkul, and A. Zell, “Smooth reference tracking of amodel robot using nonlinear model predictive control,” European Conference on MobileRobots, Vol. 2, pp. 161-166, 2009.
  18. [18] K. Wesselowski and R. Fierro, “A dual-mode model predictive controller for robotformations,” IEEE Conference on Decision and Control (CDC), January 2004.
  19. [19] W. Dunbar and R. Murray, “Model predictive control of coordinated multi-vehicleformations,” Automatica Vol.2, No.4, pp. 549-558, 2006.
  20. [20] D. Gu and H. Hu, “A model predictive controller for robots to follow a virtualDOI: 10.2316/J.2019.206-0231leader,” Robotica. Vol.27, No.6, pp.905-913, 2009.
  21. [21] K. Maeda and E. Konaka, “Cruise control of a two-wheeled vehicle based on MPCto predict the trajectory of a preceding vehicle,” The Annual Conference of the Society ofInstrument and Control Engineers, September 2014.
  22. [22] R. W. Brockett, “Asymptotic stability and feedback stabilization,” DifferentialGeometric Control Theory, pp. 181-191, 1983.
  23. [23] F. Kühne, W. F. Lagas, and J. M. Gomez, “Point stabilization of mobile robots withnonlinear model predictive control,” IEEE International Conference on Mechatronics &Automation, 2005.
  24. [24] W. F. Lages and J. A. V. Alves, “Real-time control of a mobile robot using linearizedmodel predictive control,” The 4th IFAC Symposium on Mechatronic Systems, 2006.
  25. [25] S. Akiba, T. Zanma, and M. Ishida, “Optimal tracking control of two-wheeledmobile robots based on model predictive control,” IEEE International Workshop onAdvanced Motion Control, March 2010.
  26. [26] S. Akiba, T. Zanma, and M. Ishida, “Model predictive control based optimal crusingcontrol of two-wheeled mobile robots,” IEEE Conference on Robotics Automation andMechatronics (RAM), June 2010.
  27. [27] R. Carelli, C.M. Soria, and B. Morales, “Vision-based tracking control for mobilerobots,” International Conference on Advanced Robotics, August 2005
  28. [28] A. Zdešar, I. Škrjanc, and G. Klančar, “Visual trajectory-tracking model-basedcontrol for mobile robots,” International Journal of Advanced Robotic Systems, Vol. 10,No. 9, pp. 1-12, 2013.
  29. [29] R. Carelli, C. Soria, O. Nasisi, and E. Freire, “Stable AGV corridor navigation withDOI: 10.2316/J.2019.206-0231fused vision-based control signals,” IEEE Conference on Industrial Electronics Society,November 2002.
  30. [30] S. Servic and S. Ribaric, “Determining the absolute orientation in a corridor usingprojective Geometry and Active Vision,” IEEE Transaction on Industrial Electronics, Vol.48, No. 3, pp. 696-710, 2001.
  31. [31] J. Wu , J. Wang, L. Wang, and T. Li, “Dynamics and control of a planar 3-DOFparallel manipulator with actuation redundancy,” Mechanism and Machine Theory, Vol. 4,No. 44, pp. 835-849, 2009.
  32. [32] J. Wu, D. Wang, and L. Wang, “A control strategy of a two degrees-of-freedomheavy duty parallel manipulator,” Journal of Dynamic Systems, Measurement andControl, Transactions of the ASME, Vol. 137, No. 6, 2015.
  33. [33] J. Wu, G. Yu, Y. Gao, and L. Wang, “Mechatronics modeling and vibration analysisof a 2-DOF parallel manipulator in a 5-DOF hybrid machine tool,” Mechanism andMachine Theory, Vol. 121, pp. 1339-1351, 2018.
  34. [34] T. Dierks, B. Brenner, and S. Jagannathan, “Discrete-time optimal control ofnonholonomic mobile robot formations using linearly parameterized neural networks,”International Journal of Robotics and Automation, Vol. 26, No. 1, pp. 76-85, 2011.
  35. [35] J. Ni, X. Yang, J. Chen, and S.X. Yang, “Dynamic bioinspired neural network formulti-robot formation control in unknown environments,” International Journal ofRobotics and Automation, Vol. 30, No. 3, pp. 256-266, 2015.
  36. [36] K. Bendjilali, F. Belkhouche, and B. Belkhouche, “Robot formation modelling andcontrol based on the relative kinematics equations,” International Journal of Roboticsand Automation, Vol. 24, No. 1, pp. 79-85, 2009.DOI: 10.2316/J.2019.206-0231
  37. [37] G. Rishwaraj, S.G. Ponnambalam, and R.M.K. Chetty, “Multi[37] G. Rishwaraj, S.G. Ponnambalam, and R.M.K. Chetty, “Multi--robot formation robot formation control using a hybrid posture estimation strategy,” control using a hybrid posture estimation strategy,” International JourInternational Journal of Robotics and nal of Robotics and AutomationAutomation, Vol. 29, No. 4, pp. 432, Vol. 29, No. 4, pp. 432--440, 2014.440, 2014.
  38. [38] L. Deng, X. Ma, J. Gu, Y. Li, Z. Xu, and Y. Wang, “Artificial immune network[38] L. Deng, X. Ma, J. Gu, Y. Li, Z. Xu, and Y. Wang, “Artificial immune network--based based multimulti--robot formation path planning with obstacle avoidance,” robot formation path planning with obstacle avoidance,” International Journal of International Journal of Robotics and ARobotics and Automationutomation, Vol. 31, No. 3, pp. 233, Vol. 31, No. 3, pp. 233--242, 2016.242, 2016.
  39. [39][39] W.B. Dunbar and D.S. Caveney, “Distributed receding horizon control of vehicle W.B. Dunbar and D.S. Caveney, “Distributed receding horizon control of vehicle platoons: Stability and string stability,” platoons: Stability and string stability,” IEEE Transactions on Automatic ControlIEEE Transactions on Automatic Control, Vol. 57, , Vol. 57, No. 3, pp. 620No. 3, pp. 620--633, 2012.633, 2012.
  40. [40][40] M. M. Saska, V. Vonasek, T. Krajnik, and L. Peuil, “Coordination and navigation of Saska, V. Vonasek, T. Krajnik, and L. Peuil, “Coordination and navigation of heterogeneous MAVheterogeneous MAV--UGV formations localized by a 'hawkeye'UGV formations localized by a 'hawkeye'--like approach under a like approach under a model predictive control scheme,” model predictive control scheme,” International Journal of Robotics ResearchInternational Journal of Robotics Research, Vol. 33, , Vol. 33, No. 10, pp. No. 10, pp. 13931393--1412, 2014.1412, 2014.
  41. [41] G. Wen and W. Zheng, “On constructing multiple Lyapunov Functions for tracking[41] G. Wen and W. Zheng, “On constructing multiple Lyapunov Functions for tracking control of multiple Agents with switching topologies,” control of multiple Agents with switching topologies,” IEEE Transactions on Automatic IEEE Transactions on Automatic ControlControl, (In Press), 2018., (In Press), 2018.

Important Links:

Go Back