Salah NASR, Hassen MEKKI, and Kais BOUALLEGUE


  1. [1] D. R. Corbett, D. W. Gage, and D. D. Hackett, “Robotic communications and surveil lance thedarpa landroids program,” in Australasian Joint Conference on Artificial Intelligence.Springer, 2011, pp. 749–758.
  2. [2] L. S. Martins-Filho and E. E. Macau, “Patrol mobile robots and chaotic trajectories,” Mathematicalproblems in engineering, vol. 2007, 2007.
  3. [3] P. Sooraska and K. Klomkarn, “” no-cpu” chaotic robots: From classroom to commerce,”IEEE circuits and systems magazine, vol. 10, no. 1, pp. 46–53, 2010.
  4. [4] D. W. Kim, T. A. Lasky, and S. A. Velinsky, “Autonomous multi-mobile robot system: Simulationand implementation using fuzzy logic,” International Journal of Control, Automationand Systems, vol. 11, no. 3, pp. 545–554, 2013.
  5. [5] H. Lee, E.-J. Jung, B.-J. Yi, and Y. Choi, “Navigation strategy of multiple mobile robotsystems based on the null-space projection method,” International Journal of Control, Automationand Systems, vol. 9, no. 2, pp. 384–390, 2011.
  6. [6] M. Kapanoglu, M. Ozkan, O. Parlaktuna et al., “Pattern-based genetic algorithm approachto coverage path planning for mobile robots,” in International Conference on ComputationalScience. Springer, 2009, pp. 33–42.
  7. [7] L. Feifei and L. Fei, “Time-jerk optimal planning of industrial robot trajectories,” InternationalJournal of Robotics and Automation, vol. 31, no. 1, pp. 1–7, 2016.
  8. [8] M. Shayestegan, M. H. Marhaban, S. Shafie, and A. S. B. Din, “Fuzzy logic-based robotnavigation in static environment with dead cycle obstacles,” International Journal of Roboticsand Automation, vol. 28, no. 4, 2013.
  9. [9] C. Luo and S. X. Yang, “A bioinspired neural network for real-time concurrent map buildingand complete coverage robot navigation in unknown environments,” IEEE Transactions onNeural Networks, vol. 19, no. 7, pp. 1279–1298, 2008.
  10. [10] J. Zhang, H. Lv, D. He, L. Huang, Y. Dai, and Z. Zhang, “Discrete bioinspired neural networkfor complete coverage path planning,” International Journal of Robotics and Automation,vol. 32, no. 2, 2017.
  11. [11] Y. Nakamura and A. Sekiguchi, “The chaotic mobile robot,” IEEE Transactions on Roboticsand Automation, vol. 17, no. 6, pp. 898–904, 2001.
  12. [12] R. L. Devaney and J.-P. Eckmann, “An introduction to chaotic dynamical systems,” PhysicsToday, vol. 40, p. 72, 1987.
  13. [13] C. K. Volos, N. Doukas, I. Kyprianidis, I. Stouboulos, and T. Kostis, “Chaotic autonomousmobile robot for military missions,” in Proceedings of the 17th International Conference onCommunications, 2013.
  14. [14] C. Li, F. Wang, L. Zhao, Y. Li, and Y. Song, “An improved chaotic motion path plannerfor autonomous mobile robots based on a logistic map,” International Journal of AdvancedRobotic Systems, vol. 10, no. 6, p. 273, 2013.
  15. [15] X. Zang, S. Iqbal, Y. Zhu, X. Liu, and J. Zhao, “Applications of chaotic dynamics in robotics,”International Journal of Advanced Robotic Systems, vol. 13, no. 2, p. 60, 2016.
  16. [16] E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the atmospheric sciences, vol. 20,no. 2, pp. 130–141, 1963.
  17. [17] O. E. R¨ossler, “An equation for continuous chaos,” Physics Letters A, vol. 57, no. 5, pp.397–398, 1976.
  18. [18] A. Arneodo, P. Coullet, and C. Tresser, “Possible new strange attractors with spiral structure,”Communications in Mathematical Physics, vol. 79, no. 4, pp. 573–579, 1981.
  19. [19] N. Salah, B. Kais, M. Hassen, and V. S, “Controlling mobile robot based on multi-scrolldynamic chaotic systems,” International Journal of Control Theory and Applications, vol. 10,no. 34, pp. 31–42, 2017.
  20. [20] E. D. Markus, J. T. Agee, and A. A. Jimoh, “Trajectory control of a two-link robot manipulatorin the presence of gravity and friction,” in AFRICON, 2013. IEEE, 2013, pp. 1–5.
  21. [21] E. Markus, J. Agee, A. Jimoh, N. Tlale, and B. Zafer, “Flatness based control of a 2 dof singlelink flexible joint manipulator.” in SIMULTECH, 2012, pp. 437–442.
  22. [22] E. D. Markus, J. T. Agee, and A. A. Jimoh, “Flat control of industrial robotic manipulators,”Robotics and Autonomous Systems, vol. 87, pp. 226–236, 2017.
  23. [23] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobilerobots. MIT press, 2011.
  24. [24] H. Abidi, M. Chtourou, K. Kaaniche, and H. Mekki, “Visual servoing based on efficienthistogram information,” International Journal of Control, Automation and Systems, vol. 15,no. 4, pp. 1746–1753, 2017.
  25. [25] R. Siegwart and I. R. Nourbakhsh, “Introduction to autonomous mobile robots, 2004,” BradfordBook, 2004.
  26. [26] S.-O. Lee, Y.-J. Cho, M. Hwang-Bo, B.-J. You, and S.-R. Oh, “A stable target-tracking controlfor unicycle mobile robots,” in Intelligent Robots and Systems, 2000.(IROS 2000). Proceedings.2000 IEEE/RSJ International Conference on, vol. 3. IEEE, 2000, pp. 1822–1827.
  27. [27] C. C. De Wit and O. Sordalen, “Exponential stabilization of mobile robots with nonholonomicconstraints,” IEEE transactions on automatic control, vol. 37, no. 11, pp. 1791–1797,1992.
  28. [28] T.-C. E. C.-H. C. S.-L. C. F. M. Trejo-Guerra, R., “Current conveyor realization of synchronizedchuas circuits for binary communications.” IEEE . DTIS, pp. 1–4, 2008.
  29. [29] S. Vaidyanathan, “Analysis and adaptive synchronization of two novel chaotic systems withhyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters,” Journal ofEngineering Science and Technology Review, vol. 6, no. 4, pp. 53–65, 2013.
  30. [30] S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,and engineering. Westview press, 2014.
  31. [31] L. O. Chua and E. W. Szeto, “High-order non-linear circuit elements: Circuit-theoretic properties,”International Journal of Circuit Theory and Applications, vol. 11, no. 2, pp. 187–206,1983.
  32. [32] A. Hegazi, H. Agiza, and M. El-Dessoky, “Adaptive synchronization for r¨ossler and chua’scircuit systems,” International Journal of Bifurcation and Chaos, vol. 12, no. 07, pp. 1579–1597, 2002.
  33. [33] K. Bouallegue, “Generation of multi-scroll chaotic attractors from fractal and multi-fractalprocesses,” in Chaos-Fractals Theories and Applications (IWCFTA), 2011 Fourth InternationalWorkshop on. IEEE, 2011, pp. 398–402.
  34. [34] Y. Gao, Q. Li, X. Li, and G. Qian, “Construction of multi-scroll chaotic attractors with exponentialfunction,” in Digital Signal Processing (DSP), 2016 IEEE International Conferenceon. IEEE, 2016, pp. 542–544.
  35. [35] S. Rasappan and S. Vaidyanathan, “Hybrid synchronization of n-scroll chaotic chua circuitsusing adaptive backstepping control design with recursive feedback,” Malaysian Journal ofMathematical Sciences, vol. 7, no. 2, pp. 219–246, 2013.
  36. [36] F. Nicolau and W. Respondek, “Multi-input control-affine systems linearizable via one-foldprolongation and their flatness,” in Decision and Control (CDC), 2013 IEEE 52nd AnnualConference on. IEEE, 2013, pp. 3249–3254.
  37. [37] M. Fliess, J. L´evine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear systems:introductory theory and examples,” International journal of control, vol. 61, no. 6, pp. 1327–1361, 1995.
  38. [38] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, “Bsa: a complete coveragealgorithm,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEEInternational Conference on. IEEE, 2005, pp. 2040–2044.

Important Links:

Go Back