A REVIEW ON HUMAN-EXOSKELETON COORDINATION TOWARDS LOWER LIMB ROBOTIC EXOSKELETON SYSTEMS

Yue Ma, Xinyu Wu, Jingang Yi, Can Wang, and Chunjie Chen

References

  1. [1] A. Zoss, H. Kazerooni, & A. Chu, Biomechanical design of theBerkeley lower extremity exoskeleton(BLEEX), IEEE/ASME Transactions on Mechatronics, 11(2), 2006, 128138.
  2. [2] K. Amundson, J. Raade, N. Harding, & H. Kazerooni, Hybrid hydraulic-electric power unit forfield and service robots, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Edmonton,Alta., Canada, 2005, 34533458.
  3. [3] R. Steger, S. Kim, & H.Kazerooni, Control scheme and networked control architecture for theBerkeley lower extremity exoskeleton (BLEEX), Proc. IEEE Conf. on Robotics and Automation,Orlando, FL, USA, 2006, 34693476.
  4. [4] H. Kazerooni, N. Harding, & R. Angold, Low extremity exoskeleton, Int. PatentWO 2006/078871A2, Jul. 2006.
  5. [5] H. Kazerooni, N. Harding, R. Angold, K. Amundson, J. W. Burns, & A. Zoss, Wearablematerial handling system, Int. Patent WO 2010/101 595A1, Sep. 2010.
  6. [6] [Online]. Available: http://www.rb3d.com/en/exo/, Accessed on: Sep. 2015.
  7. [7] S. Yoshiyuki, HAL: Hybrid assistive limb based on cybernics, Robotics research. Springer,Berlin, Heidelberg, 2010. 25-34.
  8. [8] Y. Tingfang, C. Marco, O. C. Maria & V. Nicola. Review of assistive strategies in poweredlower-limb orthoses and exoskeletons, Robotics and Autonomous Systems, 64, 2015, 120-136.
  9. [9] N. Domen & R. Robert, A survey of sensor fusion methods in wearable robotics, Robotics andAutonomous Systems, 73, 2015, 155-170.
  10. [10] M. Wei, L. Quan, Z. Zude, A. Qingsong, S. Bo & X. S. Shane, Recent development ofmechanisms and control strategies for robot-assisted lower limb rehabilitation, Mechatronics,31, 2015, 132-145.
  11. [11] M. R. Tucker, O. Jeremy, P. Anna, B. Hannes, B. Mohamed, L. Olivier, D. R. M. Jos´e,R. Robert, V. Heike & G. Roger, Control strategies for active lower extremity prosthetics andorthotics: a review, Journal of neuroengineering and rehabilitation, 12(1), 2015, 1.
  12. [12] V. A. Joshua & X. S. Quan, Towards compliant and wearable robotic orthoses: A review ofcurrent and emerging actuator technologies, Medical engineering & physics, 4, 2016, 317-325.
  13. [13] W. Michael, G. Martin, C. Oliver, R. Stephan & B. Philipp, Active lower limb prosthetics: asystematic review of design issues and solutions, Biomedical engineering online, 15(3), 2016,140.
  14. [14] C. Heng, L. Zhengyang, Z. Jun, W. Yu & W. Wei, Design Frame of a Leg Exoskeleton forLoad-Carrying Augmentation, Proc. IEEE Conf. on Robotics and Biomimetics, Guilin, China,2009, 426-431.
  15. [15] Y. Fan, Z. Guo, & Y. Yin, sEMG-Based Neuro-Fuzzy Controller For a Parallel Ankle Exoskeletonwith Proprioception, International Journal of Robotics and Automation, 26(4), 2011,450-460.
  16. [16] K. Gui, H. Liu, & D. Zhang, Toward Multimodal Human-Robot Interaction to Enhance ActiveParticipation of Users in Gait Rehabilitation, IEEE Transactions on Neural Systems andRehabilitation Engineering, 25(11), 2017, 2054-2066.
  17. [17] S. Kim, & J. Bae, Force-Mode Control of Rotary Series Elastic Actuators in a Lower ExtremityExoskeleton Using Model-Inverse Time Delay Control, IEEE/ASME Transactions onMechatronics, 22(3), 2017, 1392-1400.
  18. [18] G. Colombo, M. Joerg, R. Schreier, & V. Dietz, Treadmill training of paraplegic patientsusing a robotic orthosis, Journal of Rehabilitation Research and Development, 37(6), 2000,693-700.
  19. [19] D. J. Reinkensmeyer, D. Aoyagi, J. L. Emken, J. A. Galvez, W. Ichinose, G. Kerdanyan, S.Maneekobkunwong, K. Minakata, J. A. Nessler, R.Weber, R. R. Roy, R. de Leon, J. E. Bobrow,S. J. Harkema, & V. R. Edgerton, Tools for understanding and optimizing robotic gait training,Journal of Rehabilitation Research and Development, 43(5), 657-670.
  20. [20] H. K. Kwa, J. H. Noorden, M. Missel, T. Craig, J. E. Pratt, & P. D. Neuhaus, Development ofthe IHMC Mobility Assist Exoskeleton, Proc. IEEE Conf. on Robotics and Automation, Kobe,Japan, 2009, 1349-1355.
  21. [21] P. D. Neuhaus, J. H. Noorden, T. J. Craig, T. Torres, J. Kirschbaum, & J. E. Pratt, Designand evaluation of Mina: a robotic orthosis for paraplegics, Proc. IEEE Conf. on RehabilitationRobotics, Zurich, Switzerland, 2011, 1-8.
  22. [22] W. Banchadit, A. Temram, T. Sukwan, P. Owatchaiyapong, & J. Suthakorn, Design and Implementationof a New Motorized-Mechanical Exoskeleton Based on CGA Patternized Control,Proc. IEEE Conf. on Robotics and Biomimetics, Guangzhou, China, 2012, 1668-1673.
  23. [23] M. Talaty, A. Esquenazi, & J. E. Briceno, Differentiating ability in users of the ReWalk(TM)powered exoskeleton: an analysis of walking kinematics, Proc. IEEE Conf. on RehabilitationRobotics, Seattle, WA, USA, 2013, 1-5.
  24. [24] S. Tanabe, S. Hirano, & E. Saitoh,Wearable Power-Assist Locomotor (WPAL) for supportingupright walking in persons with paraplegia, Neurorehabilitation, 33(1), 2013, 99-106.
  25. [25] W. Y.-W. Tung, M. McKinley, M. V. Pillai, J. Reid, & H. Kazerooni, Design of a MinimallyActuated Medical Exoskeleton With Mechanical Swing-Phase Gait Generation and Sit-StandAssistance, ASME Conf. on Dynamic Systems and Control, Palo Alto, California, USA, 2013,4-13.
  26. [26] U. Lugris, J. Carlin, A. Luaces, & J. Cuadrado, Consideration of Assistive Devices in TheGait Analysis of Spinal Cord-Injured Subjects, ASME Conf. on Multibody Systems, NonlinearDynamics, and Control, Portland, Oregon, USA, 2014, 9-18.
  27. [27] B. Chen, X. Zhao, H. Ma, L. Qin, & W.-H. Liao, Design and characterization of a magnetorheologicalseries elastic actuator for a lower extremity exoskeleton, Smart Materials and Structures,26(10), 2017, 105008.
  28. [28] S. K. Banala, S. H. Kim, S. K. Agrawal, & J. P. Scholz, Robot Assisted Gait Training WithActive Leg Exoskeleton (ALEX), IEEE Transactions on Neural Systems and RehabilitationEngineering, 17(1), 2009, 2-8.
  29. [29] S. K. Banala, S. K. Agrawal, S. H. Kim, & J. P. Scholz, Novel Gait Adaptation and NeuromotorTraining Results Using an Active Leg Exoskeleton, IEEE/ASME Transactions on Mechatronics,2010, 15(2), 216-225.
  30. [30] X. Jin, X. Cui, & S. K. Agrawal, Design of a Cable-driven Active Leg Exoskeleton (CALEX)and Gait Training Experiments with Human Subjects, Proc. IEEE Conf. on Roboticsand Automation, Seattle, WA, USA, 2015, 5578-5583.
  31. [31] P. Beyl, M. Van Damme, P. Cherelle, & D. Lefeber, Safe and compliant guidance in robotassistedgait rehabilitation using proxy-based sliding mode control, Proc. IEEE Conf. on RehabilitationRobotics, Kyoto, Japan, 2009, 321-326.
  32. [32] P. Beyl, K. Knaepen, S. Duerinck, M. Van Damme, B. Vanderborght, R. Meeusen, & D.Lefeber, Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-AssistedRehabilitation of Gait, Advanced Robotics, 25(5), 2011, 513-535.
  33. [33] K. Knaepen, P. Beyl, S. Duerinck, F. Hagman, D. Lefeber, & R. Meeusen, Human-RobotInteraction: Kinematics and Muscle Activity Inside a Powered Compliant Knee Exoskeleton,IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(6), 2014, 1128-1137.
  34. [34] A. Duschau-Wicke, J. Von Zitzewitz, L. Luenenburger, and R. Riener, Patient-Driven CooperativeGait Training with the Rehabilitation Robot Lokomat, Proc. Int. Fed. European Conf. onMedical and Biological Engineering, ETH Zurich, Zurich, Switzerland, 2009, 1616-1619.
  35. [35] Y. Yang, C. Yang, K.-M. Lee, & H. Yu, Model-based Fuzzy Adaptation for Control of aLower Extremity Rehabilitation Exoskeleton, Proc. IEEE/ASME Conf. on Advanced IntelligentMechatronics, Singapore, 2009, 350.
  36. [36] J.-f. Zhang, Y.-m. Dong, C.-j. Yang, Y. Geng, Y. Chen, & Y. Yang, 5-Link model basedgait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-strokepatients, Mechatronics, 20(3), 2010, 368-376.
  37. [37] J. Hu, Z.-G. Hou, Y. Chen, L. Peng, & L. Peng, Task-Oriented Active Training Based onAdaptive Impedance Control with iLeg-a Horizontal Exoskeleton for Lower Limb Rehabilitation,Proc. IEEE Conf. on Robotics and Biomimetics, Shenzhen, China, 2013, 2025-2030.
  38. [38] R. Lopez, H. Aguilar-Sierra, S. Salazar, J. Torres, & R. Lozano, Adaptive Control for PassiveKinesiotherapy ELLTIO, Proc. IEEE Conf. on Advanced Robotics, Montevideo, Uruguay,2013, 1-6.
  39. [39] B. Ugurlu, H. Oshima, & T. Narikiyo, Lower Body Exoskeleton-Supported CompliantBipedal Walking for Paraplegics: How to Reduce Upper Body Effort?, Proc. IEEE Conf. onon Robotics and Automation, Hong Kong, China, 2014, 1354-1360.
  40. [40] G. S. Heo, S.-R. Lee, M. K. Kwak, C. W. Park, G. Kim, & C.-Y. Lee, Motion Control ofBicycle-Riding Exoskeleton Robot with Interactive Force Analysis, International Journal ofPrecision Engineering and Manufacturing, 16(7), 1631-1637.
  41. [41] K. D. Mien, C. Hong, T. T. Huu, & J. Qiu, Minimizing human-exoskeleton interaction forceby using global fast sliding mode control, International Journal of Control Automation andSystems, 14(4), 2016, 1064-1072.
  42. [42] D. M. Ka, H. Cheng, T. H. Toan, & Q. Jing, Minimizing Human-Exoskeleton InteractionForce Using Compensation for Dynamic Uncertainty Error with Adaptive RBF Network, Journalof Intelligent and Robotic Systems, 82(3-4), 2016, 413-433.
  43. [43] P. K. Jamwal, S. Hussain, M. H. Ghayesh, & S. V. Rogozina, Impedance Control of an IntrinsicallyCompliant Parallel Ankle Rehabilitation Robot, IEEE Transactions on Industrial Electronics,63(6), 2016, 3638-3647.
  44. [44] P. K. Jamwal, S. Hussain, M. H. Ghayesh, & S. V. Rogozina, Adaptive Impedance Control ofParallel Ankle Rehabilitation Robot, Journal of Dynamic Systems Measurement and Control-Transactions of the ASME, 139(11), 2017, 1608.
  45. [45] H. Rifai, M. S. Ben Abdessalem, A. Chemori, S. Mohammed, & Y. Amirat, Augmented L1Adaptive Control of an Actuated Knee Joint Exoskeleton: From Design to Real-Time Experiments,Proc. IEEE Conf. on Robotics and Automation, Stockholm, Sweden, 2016, 5708-5714.
  46. [46] H. Rifai, S. Mohammed, K. Djouani, & Y. Amirat, Toward Lower Limbs Functional RehabilitationThrough a Knee-Joint Exoskeleton, IEEE Transactions on Control Systems Technology,25(2), 2017, 712-719.
  47. [47] W. M. dos Santos, G. A. P. Caurin, & A. A. G. Siqueira, Design and control of an active kneeorthosis driven by a rotary Series Elastic Actuator, Control Engineering Practice, 58, 2017,307-318.
  48. [48] X. Li, Y. Pan, G. Chen, & H. Yu, Multi-modal control scheme for rehabilitation roboticexoskeletons, International Journal of Robotics Research, 36(5-7), 2017, 759-777.
  49. [49] K. H. Low, X. Liu, & H. Yu, Development of NTU wearable exoskeleton system for assistivetechnologies, Proc. IEEE Conf. on Mechatronics and Automation, Niagara Falls, Ont., Canada,2005, 1099-1106.
  50. [50] K. H. Low, X. Liu, C. H. Goh, and H. Yu, Locomotive control of a wearable lower exoskeletonfor walking enhancement, Journal of Vibration and Control, 12(12), 2006, 1311-1336.
  51. [51] W. Kim, S. Lee, M. Kang, J. Han, & C. Han, Energy-efficient Gait Pattern Generation ofthe Powered Robotic Exoskeleton using DME, Proc. IEEE/RSJ Conf. on Intelligent Robots andSystems, Taipei, Taiwan,2010, pp. 2475-2480.
  52. [52] S. Lee, W. Kim, M. Kang, J. Han, & C. Han, Optimal Gait Pattern Generation for PoweredRobotic Exoskeleton and Verification of its Feasibility, Proc. Int. Symposium in Robot andHuman Interactive Communication, Viareggio, Italy, 2010, 500-505.
  53. [53] D. Sanz-Merodio, M. Cestari, J. Carlos Arevalo, & E. Garcia, A lower-limb exoskeletonfor gait assistance in quadriplegia, Proc. IEEE/RSJ Conf. on Robotics and Biomimetics,Guangzhou, China, 2012, 122-127.
  54. [54] D. Sanz-Merodio, M. Cestari, J. C. Arevalo, X. A. Carrillo, & E. Garcia, Generation andcontrol of adaptive gaits in lower-limb exoskeletons for motion assistance, Advanced Robotics,28(5), 2014, 329-338.
  55. [55] D. Sanz-Merodio, J. Sancho, M. Perez, & E. Garcia, Control Architecture of The ATLAS2020 Lower Limb Active Orthosis, Advances in Cooperative Robotics, 2017, 860-868.
  56. [56] N. Trung, T. Komeda, T. Miyoshi, & L. Ota, The Powered Gait Training System Using Feedbackfrom Own Walking Information, Issnip Conf. on Biosignals and Biorobotics, Rio de Janerio,Brazil, 2013, 239-243.
  57. [57] Y. Hasegawa, & K. Nakayama, Finger-mounted walk controller of powered exoskeleton forparaplegic patient’s walk, World Automation Congress, Waikoloa, HI, USA, 2014, 400-405.
  58. [58] M. Li, Z. Yuan, X. Wang, & Y. Hasegawa, Electric stimulation and cooperative control forparaplegic patient wearing an exoskeleton, Robotics and Autonomous Systems, 98, 2017, 204-212.
  59. [59] T. Kagawa, H. Ishikawa, T. Kato, C. Sung, & Y. Uno, Optimization-Based Motion Planningin Joint Space for Walking Assistance With Wearable Robot, IEEE Transactions on Robotics,31(2), 2015, 415-424.
  60. [60] K. Kamali, A. A. Akbari, & A. Akbarzadeh, Trajectory generation and control of a kneeexoskeleton based on dynamic movement primitives for sit-to-stand assistance, AdvancedRobotics, 30(13), 2016, 846-860.
  61. [61] Y. Long, Z.-j. Du, W. Wang, & W. Dong, Development of a wearable exoskeleton rehabilitationsystem based on hybrid control mode, International Journal of Advanced Robotic Systems,13, 2016, 1729881416664847.
  62. [62] A. I. A. Ahmed, H. Cheng, X. Lin, Z. M. E. Elhassan, & M. Omer, On-line Walking SpeedControl in Human-Powered Exoskeleton Systems, Int. Conf. on Communication, Control, Computingand Electronics Engineering, Khartoum, Sudan, 2017, 1-7.
  63. [63] A. I. A. Ahmed, C. Hong, L. Zhang, M. Omer, & X. Lin, On-line Walking Speed Controlin Human-Powered Exoskeleton Systems Based on Dual Reaction Force Sensors, Journal ofIntelligent and Robotic Systems, 87(1), 2017, 59-80.
  64. [64] R. Griffin, T. Cobb, T. Craig, M. Daniel, N. van Dijk, J. Gines, K. Kramer, S. Shah, O.Siebinga, J. Smith, & P. Neuhaus, Stepping Forward with Exoskeletons Team IHMC’s Designand Approach in the 2016 Cybathlon, Ieee Robotics and Automation Magazine, 24(4), 2017,66-74.
  65. [65] S. Kim, & J. Bae, Force-Mode Control of Rotary Series Elastic Actuators in a Lower ExtremityExoskeleton Using Model-Inverse Time Delay Control, IEEE/ASME Transactions onMechatronics, 22(3), 2017, 1392-1400.
  66. [66] K. A. Strausser, T. A. Swift, A. B. Zoss, & H. Kazerooni, Prototype Medical Exoskeleton forParaplegic Mobility: First Experimental Results, Proc. ASME Conf. on Dynamic Systems andControl Conference, Cambridge, Massachusetts, USA, 2010, 453-458.
  67. [67] H. A. Quintero, R. J. Farris, & M. Goldfarb, Control and Implementation of a Powered LowerLimb Orthosis to Aid Walking in Paraplegic Individuals, Proc. IEEE Conf. on RehabilitationRobotics, Zurich, Switzerland, 2011, 1-6.
  68. [68] K. A. Strausser, & H. Kazerooni, The Development and Testing of a Human Machine Interfacefor a Mobile Medical Exoskeleton, Proc. IEEE/RSJ Conf. on Intelligent Robots andSystems, San Francisco, CA, USA, 2011, 4911-4916.
  69. [69] D. Sanz-Merodio, M. Cestari, J. Carlos Arevalo, & E. Garcia, Control Motion Approachof a Lower Limb Orthosis to Reduce Energy Consumption, International Journal of AdvancedRobotic Systems, 9(6), 2012, 232.
  70. [70] A. J. del-Ama, A. Gil-Agudo, J. L. Pons, & J. C. Moreno, Hybrid FES-robot cooperativecontrol of ambulatory gait rehabilitation exoskeleton, Journal of Neuroengineering and Rehabilitation,11(4), 2014, 27.
  71. [71] J. Poonsiri, M. Rachagorngij, & W. Charoensuk, Biomechanical Based Design of an ActiveKnee Ankle Foot Orthosis to Augment the Knee Motions, Proc. Int. Conf. on BiomedicalEngineering, Fukuoka, 2014, 1-5.
  72. [72] F. Chen, Y. Yu, Y. Ge, J. Sun, & B.Wu, A PAWL for enhancing strength and endurance duringwalking using interaction force and dynamical information, Porc. IEEE Conf. on Robotics andBiomimetics, Kunming, China, 2006, 654-659.
  73. [73] K. Kong, & D. Jeon, Design and control of an exoskeleton for the elderly and patients,IEEE/ASEM Transactions on Mechatronics, 11(4), 2006, 428-432.
  74. [74] B. Weinberg, J. Nikitczuk, S. Patel, B. Patritti, C. Mavroidis, P. Bonato, & P. Canavan, Design,control and human testing of an active knee rehabilitation orthotic device, Proc. IEEEConf. on Robotics and Automation, Roma, Italy, 2007, 4126-4133.
  75. [75] C. Zhang, X. Zang, Z. Leng, H. Yu, J. Zhao, & Y. Zhu, Human-machine force interactiondesign and control for the HIT load-carrying exoskeleton, Advances in Mechanical Engineering,8(4), 2016, 1687814016645068.
  76. [76] K. Fujishiro, T. Ariumi, O. Oyama, & T. Yoshimitu, Development of pneumatic assist systemfor human walk, SICE Annual Conf. Program and Abstracts, 2003, pp. 41.
  77. [77] J. Chen, &W.-H. Liao, A leg exoskeleton utilizing a magnetorheological actuator, Proc. IEEEConf. on Robotics and Biomimetics, Kunming, China, 2006, 824-829.
  78. [78] K. H. Low, & Y. Yin, Providing assistance to knee in the design of a portable active orthoticdevice, Proc. IEEE Conf. on Automation Science and Engineering, Shanghai, China, 2016, 188.
  79. [79] C. J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, & H. Herr, Development of alightweight, underactuated exoskeleton for load-carrying augmentation, Proc. IEEE Conf. onRobotics and Automation, Orlando, FL, USA, 2006, 3485.
  80. [80] C. J. Walsh, K. Pasch, & H. Herr, An autonomous, underactuated exoskeleton for loadcarryingaugmentation, Proc. IEEE Conf. on Intelligent Robots and Systems, Beijing, China,2006, 1410-1415.
  81. [81] C. J. Walsh, K. Endo, & H. Herr, A quasi-passive leg exoskeleton for load-carrying augmentation,International Journal of Humanoid Robotics, 4(3), 2007, 487-506.
  82. [82] A. M. Oymagil, J. K. Hitt, T. Sugar, & J. Fleeger, Control of a regenerative braking poweredankle foot orthosis, Proc. IEEE Conf. on Rehabilitation Robotics, Noordwijk, Netherlands,2007, 28.
  83. [83] M. Sugisaka, J. Wang, H. Tsumura, & M. Kataoka, A control method of ankle foot orthosis(AFO) with artificial muscle, SICE Annual Conf., Tokyo, Japan, 2008, 2013-2017.
  84. [84] J. S. Sulzer, R. A. Roiz, M. A. Peshkin, & J. L. Patton, A Highly Backdrivable, LightweightKnee Actuator for Investigating Gait in Stroke, IEEE Transactions on Robotics, 25(3), 2009,539-548.
  85. [85] J. Kim, S. Hwang, R. Sohn, Y. Lee, & Y. Kim, Development of an active ankle foot orthosisto prevent foot drop and toe drag in hemiplegic patients: A preliminary study, Applied Bionicsand Biomechanics, 8(3-4), 2011, 377-384.
  86. [86] E. A. Morris, K. A. Shorter, Y. Li, E. T. Hsiao-Wecksler, G. F. Kogler, T. Bretl, & W. K.Durfee, Actuation Timing Strategies for a Portable Powered Ankle Foot Orthosis, Proc. ASMEConf. on Dynamic Systems and Control and Bath/ASME Symposium on Fluid Power and MotionControl, Arlington, Virginia, USA, 2011, 807-814.
  87. [87] D. Sasaki, T. Noritsugu, M. Takaiwa, & I. R. S. o. Japan, Development of Pneumatic LowerLimb Power AssistWear without Exoskeleton, Proc. IEEE/RSJ Conf. on Intelligent Robots andSystems, Vilamoura, Portugal, 2012, 1239-1244.
  88. [88] D. Sasaki, T. Noritsugu, & M. Takaiwa, Development of Pneumatic Lower Limb PowerAssist Wear driven with Wearable Air Supply System, Proc. IEEE/RSJ Conf. on IntelligentRobots and Systems, Tokyo, Japan, 2013, 4440-4445.
  89. [89] K. Shamaei, P. C. Napolitano, & A. M. Dollar, A Quasi-Passive Compliant Stance ControlKnee-Ankle-Foot Orthosis, Proc. IEEE Conf. on Rehabilitation Robotics, Seattle, WA, USA,2013, 1-6.
  90. [90] B. Shen, J. Li, F. Bai, & C.-M. Chew, Development and Control of a Lower Extremity AssistiveDevice (LEAD) for Gait Rehabilitation, Proc. IEEE Conf. on Rehabilitation Robotics,Seattle, WA, USA, 2013, 1-6.
  91. [91] B. Shen, J. Li, & C.-M. Chew, Functional Task based Assistance duringWalking for a LowerExtremity Assistive Device, Proc. IEEE Conf. on Robotics and Automation, Hong Kong, China,2014, 246-251.
  92. [92] M. Wehner, B. Quinlivan, P. M. Aubin, E. Martinez-Villalpando, M. Baumann, L. Stirling,K. Holt, R. Wood, & C. Walsh, A Lightweight Soft Exosuit for Gait Assistance, Proc. IEEEConf. on Robotics and Automation, Karlsruhe, Germany, 2013, 3362-3369.
  93. [93] L. M. Mooney, E. J. Rouse, & H. M. Herr, Autonomous exoskeleton reduces metabolic costof walking, Proc. IEEE Conf. on Engineering in Medicine and Biology Society, Chicago, IL,USA, 2014, 3065-3068.
  94. [94] T. Kanno, D. Morisaki, R. Miyazaki, G. Endo, & K. Kawashima, A Walking AssistiveDevice with Intention Detection using Back-driven Pneumatic Artificial Muscles, Proc.IEEE/RAS/EMBS Conf. on Rehabilitation Robotics, Singapore, Singapore, 2015, 565-570.
  95. [95] H. Kim, C. Seo, Y. J. Shin, J. Kim, & Y. S. Kang, Locomotion Control Strategy of HydraulicLower Extremity Exoskeleton Robot, Proc. IEEE/ASME Conf. on Advanced IntelligentMechatronics, Busan, South Korea, 2015, 577-582.
  96. [96] H. Kim, Y. J. Shin, & J. Kim, Design and locomotion control of a hydraulic lower extremityexoskeleton for mobility augmentation, Mechatronics, 46, 2017, 32-45.
  97. [97] D. Lim, W. Kim, H. Lee, H. Kim, K. Shin, T. Park, J. Lee, & C. Han, Development of aLower Extremity Exoskeleton Robot with a Quasi-anthropomorphic Design Approach for LoadCarriage, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Hamburg, Germany, 2015,5345-5350.
  98. [98] Z. Zhou, Y. Liao, C. Wang, & Q. Wang, Preliminary Evaluation of Gait Assistance DuringTreadmill Walking with A Light-weight Bionic Knee Exoskeleton, Proc. IEEE Conf. onRobotics and Biomimetics , Qingdao, China, 2016, 1173-1178.
  99. [99] D. J. Hyun, H. Lim, S. Park, & K. Jung, Development of Ankle-Less Active Lower-LimbExoskeleton Controlled Using Finite Leg Function State Machine, International Journal of PrecisionEngineering and Manufacturing, 18(6), 2017, 803-811.
  100. [100] Z. F. Lerner, D. L. Damiano, H.-S. Park, A. J. Gravunder, & T. C. Bulea, A Robotic Exoskeletonfor Treatment of Crouch Gait in ChildrenWith Cerebral Palsy: Design and Initial Application,IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6), 2017,650-659.
  101. [101] S. Thapa, H. Zheng, G. F. Kogler, & X. Shen, A Robotic Knee Orthosis For Sit-To-StandAssistance, Proc. ASME Conf. Dynamic Systems and Control, Minneapolis, Minnesota, USA,2017, V001T07A004.
  102. [102] G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, & A. Goswami, A 1-DOF Assistiveexoskeleton with virtual negative damping: Effects on the kinematic response of the lowerlimbs, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, San Diego, CA, USA, 2007,1938-1944.
  103. [103] G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, & A. Goswami, Design of an active onedegree-of-freedom lower-limb exoskeleton with inertia compensation, International Journal ofRobotics Research, 30(4), 2011, 486-499.
  104. [104] G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, & A. Goswami, Inertia CompensationControl of a One-Degree-of-Freedom Exoskeleton for Lower-Limb Assistance: Initial Experiments,IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(1), 2012,68-77.
  105. [105] G. Aguirre-Ollinger, Learning muscle activation patterns via nonlinear oscillators: applicationto lower-limb assistance, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, Tokyo,Japan, 2013, 1182-1189.
  106. [106] H.-T. Tran, H. Cheng, M.-K. Duong, & H. Zheng, Fuzzy-based Impedance Regulationfor Control of the Coupled Human-Exoskeleton System, Proc. IEEE Conf. on Robotics andBiomimetics, Bali, Indonesia, 2014, 986-992.
  107. [107] U. Nagarajan, G. Aguirre-Ollinger, & A. Goswami, Integral Admittance Shaping for ExoskeletonControl, Proc. IEEE Conf. on Robotics and Automation, Seattle, WA, USA, 2015,5641-5648.
  108. [108] G. Aguirre-Ollinger, U. Nagarajan, & A. Goswami, An admittance shaping controller forexoskeleton assistance of the lower extremities, Autonomous Robots, 40(4), 2016, 701-728.
  109. [109] U. Nagarajan, G. Aguirre-Ollinger, & A. Goswami, Integral admittance shaping: A unifiedframework for active exoskeleton control, Robotics and Autonomous Systems, 75, 2016, 310-324.
  110. [110] J. C. Perez-Ibarra, A. A. G. Siqueira, & H. I. Krebs, Assist-as-needed Ankle Rehabilitationbased on Adaptive Impedance Control, Proc. IEEE/RAS/EMBS Conf. on RehabilitationRobotics, Singapore, Singapore, 2015, 723-728.
  111. [111] W. Huo, S. Mohammed, Y. Amirat, & K. Kong, Active Impedance Control of a Lower LimbExoskeleton to Assist Sit-to-Stand Movement, Proc. IEEE Conf. on Robotics and Automation,Stockholm, Sweden, 2016, 3530-3536.
  112. [112] I. Kardan, & A. Akbarzadeh, Assistive Control of a Compliantly Actuated Single AxisStage, Int. Conf. on Robotics and Mechatronics, Tehran, Iran, 2016, 313-318.
  113. [113] I. Kardan, & A. Akbarzadeh, Output feedback assistive control of single-DOF SEA poweredexoskeletons, Industrial Robot-an International Journal, 44(3), 2017, 275-287.
  114. [114] Q. Liu, A. Liu, W. Meng, Q. Ai, & S. Q. Xie, Hierarchical Compliance Control of a SoftAnkle Rehabilitation Robot Actuated by Pneumatic Muscles, Frontiers in Neurorobotics, 11(4),2017, 64.
  115. [115] T. Lenzi, D. Zanotto, P. Stegall, M. C. Carrozza, & S. K. Agrawal, Reducing Muscle Effortin Walking through Powered Exoskeletons, Proc. IEEE Conf. on Engineering in Medicine andBiology Society, San Diego, CA, USA, 2012, 3926-3929.
  116. [116] T. Petric, A. Gams, T. Debevec, L. Zlajpah, & J. Babic, Control approaches for robotic kneeexoskeleton and their effects on human motion, Advanced Robotics, 27(13), 2013, 993-1002.
  117. [117] W. van-Dijk, H. van-der-Kooij, B. Koopman, & E. H. F. van Asseldonk, Improving thetransparency of a rehabilitation robot by exploiting the cyclic behaviour of walking, Proc. IEEEConf. on Rehabilitation Robotics, Seattle, WA, USA, 2013, 1-8.
  118. [118] J. Kerestes, T. G. Sugar, & M. Holgate, Adding And Subtracting Energy To Body Motion -Phase Oscillator, Proc. ASME Conf. Design Engineering Technical and Computers and Informationin Engineering, Buffalo, New York, USA, 2014, V05AT08A004.
  119. [119] K. Seo, J. Lee, Y. Lee, T. Ha, & Y. Shim, Fully Autonomous Hip Exoskeleton SavesMetabolic Cost of Walking, Proc. IEEE Conf. on Robotics and Automation, Stockholm, Sweden,2016, 4628-4635.
  120. [120] V. R. Garate, A. Parri, T. Yan, M. Munih, R. M. Lova, N. Vitiello, & R. Ronsse, ExperimentalValidation of Motor Primitive-Based Control for Leg Exoskeletons during ContinuousMulti-Locomotion Tasks, Frontiers in Neurorobotics, 11, 2017, 1-17.
  121. [121] A. Parri, T. Yan, F. Giovacchini, M. Cortese, M. Muscolo, M. Fantozzi, R. M. Lova, & N.Vitiello, A Portable Active Pelvis Orthosis for Ambulatory Movement Assistance, WearableRobotics: Challenges and Trends, Biosystems and Biorobotics, 16 (Springer, Cham) 75-80.
  122. [122] J. Olivier, A. Ortlieb, M. Bouri, & H. Bleuler, Influence of an Assistive Hip Orthosis onGait, Advances in Intelligent Systems and Computing, 540 (Springer, Cham) 531-540.
  123. [123] T. G. Sugar, E. Fernandez, D. Kinney, K. W. Hollander, & S. Redkar, HeSA, Hip Exoskeletonfor Superior Assistance, Wearable Robotics: Challenges and Trends, Biosystems andBiorobotics, 16 ( Springer, Cham) 319-323.
  124. [124] W. van-Dijk, C. Meijneke, & H. van-der-Kooij, Evaluation of the Achilles Ankle Exoskeleton,IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2), 2017, 151-160.
  125. [125] L. Gui, Z. Yang, X. Yang, W. Gu, & Y. Zhang, Design and control technique research ofexoskeleton suit, Proc. IEEE Conf. on Automation and Logistics, Jinan, China, 2007, 541–546.
  126. [126] H. Cao, Z. Ling, J. Zhu, Y. Wang, & W. Wang, Design Frame of a Leg Exoskeleton forLoad-Carrying Augmentation, Proc. IEEE Conf. on Robotics and Biomimetics, Guilin, China,2009, 426-431.
  127. [127] K. Sano, E. Yagi, & M. Sato, A Study on Estimation of Walking Intention Using FootSwitches and Hip Joint Angles for Walking Assist of Non-handicapped Persons, Proc. SiceAnnual Conf., Nagoya, Japan, 2013, 1527-1532.
  128. [128] Y. Ding, I. Galiana, A. Asbeck, B. Quinlivan, S. M. M. De Rossi, & C. Walsh, MultijointActuation Platform for Lower Extremity Soft Exosuits, Proc. IEEE Conf. on Robotics andAutomation, Hong Kong, China, 2014, 1327-1334.
  129. [129] A. T. Asbeck, S. M. M. De Rossi, K. G. Holt, & C. J. Walsh, A biologically inspired softexosuit for walking assistance, International Journal of Robotics Research, 34(6), 2015, 744-762.
  130. [130] A. T. Asbeck, K. Schmidt, & C. J. Walsh, Soft exosuit for hip assistance, Robotics andAutonomous Systems, 73, 2015, 102-110.
  131. [131] Y. Ding, I. Galiana, C. Siviy, F. A. Panizzolo, & C. Walsh, IMU-based Iterative Control forHip Extension Assistance with a Soft Exosuit, Proc. IEEE Conf. on Robotics and Automation,Stockholm, Sweden, 2016, 3501-3508.51
  132. [132] Y. Ding, F. A. Panizzolo, C. Siviy, P. Malcolm, I. Galiana, K. G. Holt, & C. J. Walsh,Effect of timing of hip extension assistance during loaded walking with a soft exosuit, Journalof Neuroengineering and Rehabilitation, 13, 2016, 87.
  133. [133] J. Deng, P. Wang, M. Li, W. Guo, F. Zha, & X. Wang, Structure design of active powerassistlower limb exoskeleton APAL robot, Advances in Mechanical Engineering, 9(11), 2017,1687814017735791.
  134. [134] K. Schmidt, J. E. Duarte, M. Grimmer, A. Sancho-Puchades, H. Wei, C. S. Easthope, & R.Riener, The Myosuit: Bi-articular Anti-gravity Exosuit That Reduces Hip Extensor Activity inSitting Transfers, Frontiers in Neurorobotics, 11, 2017, 57.
  135. [135] D. Martelli, F. Vannetti, M. Cortese, P. Tropea, F. Giovacchini, S. Micera, V. Monaco, &N. Vitiello, The effects on biomechanics of walking and balance recovery in a novel pelvisexoskeleton during zero-torque control, Robotica, 32(8), 2014, 1317-1330.
  136. [136] Q.Wu, X.Wang, F. Du, & X. Zhang, Design and Control of a Powered Hip Exoskeleton forWalking Assistance, International Journal of Advanced Robotic Systems, 12, 2015, 18.
  137. [137] U. Haider, I. I. Nyoman, J. L. Coronado, C. Kim, & G. S. Virk, User-centric HarmonizedControl for Single Joint Assistive Exoskeletons, International Journal of Advanced RoboticSystems, 13, 2016, 115.
  138. [138] M. J. Claros, R. Soto, J. L. Gordillo, J. L. Pons, & J. L. Contreras-Vidal, Robotic Assistanceof Human Motion using Active-backdrivability on a Geared Electromagnetic Motor, InternationalJournal of Advanced Robotic Systems, 13, 2016, 40.
  139. [139] L. Saccares, I. Sarakoglou, & N. G. Tsagarakis, iT-Knee: An Exoskeleton with Ideal TorqueTransmission Interface for Ergonomic Power Augmentation, Proc. IEEE/RSJ Conf. on IntelligentRobots and Systems, Daejeon, South Korea, 2016, 780–786.
  140. [140] T. Bacek, M. Moltedo, K. Langlois, G. A. Prieto, M. C. Sanchez-Villamanan, J. Gonzalez-Vargas, B. Vanderborght, D. Lefeber, & J. C. Moreno, BioMot exoskeleton - Towards a smartwearable robot for symbiotic human-robot interaction, Proc. IEEE Conf. on RehabilitationRobotics, London, UK, 2017, 1666-1671.
  141. [141] S. Kim, & J. Bae, Force-Mode Control of Rotary Series Elastic Actuators in a Lower ExtremityExoskeleton Using Model-Inverse Time Delay Control, IEEE/ASME Transactions onMechatronics, 22(3), 2017, 1392-1400.
  142. [142] H. van der Kooij, B. Koopman, & E. H. F. van Asseldonk, Body weight support by virtualmodel control of an impedance controlled exoskeleton (LOPES) for gait training, Proc. IEEEConf. on Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 2008, 1969-1972.
  143. [143] O. Unluhisarcikli, M. Pietrusinski, B. Weinberg, P. Bonato, & C. Mavroidis, Design andControl of a Robotic Lower Extremity Exoskeleton for Gait Rehabilitation, Proc. IEEE/RSJConf. on Intelligent Robots and Systems, San Francisco, CA, USA, 2011, 4893–4898.
  144. [144] K. N. Winfree, P. Stegall, & S. K. Agrawal, Design of a minimally constraining, passivelysupported gait training exoskeleton: ALEX II, Proc. IEEE Conf. on Rehabilitation Robotics,Zurich, Switzerland, 2011, 5975499-5975499.
  145. [145] D. Zanotto, T. Lenzi, P. Stegall, & S. K. Agrawal, Improving Transparency of PoweredExoskeletons Using Force/Torque Sensors on the Supporting Cuffs, Proc. IEEE Conf. on RehabilitationRobotics, Seattle, WA, USA, 2013, 1-6.
  146. [146] D. Zanotto, P. Stegall, & S. K. Agrawal, Adaptive Assist-As-Needed Controller to ImproveGait Symmetry in Robot-Assisted Gait Training, Proc. IEEE Conf. on Robotics and Automation,Hong Kong, China, 2014, 724-729.
  147. [147] L. Huang, J. R. Steger, & H. Kazerooni, Hybrid control of the berkeley lower extremityexoskeleton (BLEEX), The International Journal of Robotics Research, 25(5-6), 2005, 561-573.
  148. [148] H. Kazerooni, Exoskeletons for human power augmentation, Proc. IEEE/RSJ Conf. on IntelligentRobots and Systems, Edmonton, Alta., Canada, 2005, 3459-3464.
  149. [149] H. Kazerooni, J. L. Racine, L. H. Huang, & R. Steger, On the control of the Berkeley LowerExtremity Exoskeleton (BLEEX), Proc. IEEE Conf. on Robotics and Automation, Barcelona,Spain, Spain, 2005, 4353-4360.
  150. [150] R. Huang, H. Cheng, Q. Chen, T. Huu-Toan, & X. Lin, Interactive Learning for SensitivityFactors of a Human-Powered Augmentation Lower Exoskeleton, Proc. IEEE/RSJ Conf. onIntelligent Robots and Systems, Hamburg, Germany, 2015, 6409-6415.
  151. [151] K. Kasaoka & Y. Sankai, Predictive control estimating operator’s intention for steppingupmotion by exo-sckeleton type power assist system HAL, Proc. IEEE/RSJ Conf. IntelligentRobots and Systems, 2001, 1578–1583.
  152. [152] J. L. Contreras-Vidal, & R. G. Grossman, NeuroRex: a clinical neural interface roadmap forEEG-based brain machine interfaces to a lower body robotic exoskeleton, Proc. IEEE Conf. onEngineering in Medicine and Biology, 2013, 1579-1582.
  153. [153] K. Lee, D. Liu, L. Perroud, R. Chavarriaga, & J. d. R. Millan, Endogenous Control ofPowered Lower-Limb Exoskeleton, Wearable Robotics: Challenges and Trends, Biosystemsand Biorobotics, 16 (Springer, Cham) 115-119.
  154. [154] W. Meng, B. Ding, Z. Zhou, Q. Liu, & Q. Ai, An EMG-based Force Prediction and ControlApproach for Robot-assisted Lower Limb Rehabilitation, Proc. IEEE Conf. on Systems, Manand Cybernetics, San Diego, CA, USA, 2014, 2198-2203.
  155. [155] W. Meng, Y. Zhu, Z. Zhou, K. Chen, & Q. Ai, Active Interaction Control of a RehabilitationRobot Based on Motion Recognition and Adaptive Impedance Control, Proc. IEEE Conf. onFuzzy Systems, Beijing, China, 2014, 1436-1441.
  156. [156] K. Gui, H. Liu, & D. Zhang, Toward Multimodal Human-Robot Interaction to EnhanceActive Participation of Users in Gait Rehabilitation, IEEE Transactions on Neural Systems andRehabilitation Engineering, 25(11), 2017, 2054-2066.
  157. [157] Y. Fan, Z. Guo, & Y. Yin, sEMG-Based Neuro-Fuzzy Controller For A Parallel Ankle ExoskeletonWith Propripception, International Journal of Robotics and Automation, 26(4), 2011,450-460.
  158. [158] S.-H. Lee, S.-N. Yu, H.-D. Lee, S.-J. Hong, C.-S. Han, & J.-S. Han, Proposal for a modulartypeknee-assistive wearable unit and verification of its feasibility, Int. Symposium on Automationand Robotics in Construction, 2008, pp. 187–194.
  159. [159] H. Kawamoto, & Y. Sankai, Power Assist System HAL-3 for Gait Disorder Person, LectureNotes in Computer Science. 2398 (Springer, Berlin, Heidelberg) 196-203.
  160. [160] H. Kawamoto, S. Lee, S. Kanbe, & Y. Sankai, Power assist method for HAL-3 using EMGbasedfeedback controller, Proc. IEEE Conf. on Systems, Man and Cybernetics, Washington,DC, USA, 2003, 1648-1653.
  161. [161] C. Mavroidis, J. Nikitczuk, B. Weinberg, R. Arango, G. Danaher, K. Jensen, M. Leahey, R.Pavone, P. Pelletier, A. Provo, J. Prugnarola, R. Stuart, & D. Yasevac, Smart portable rehabilitationdevices, Journal of NeuroEngineering and Rehabilitation, 2(1), 2005, 18.
  162. [162] C. Fleischer, A. Wege, K. Kondak, & G. Hommel, Application of EMG signals for controllingexoskeleton robots, Biomedizinische Technik, 51(5-6), 2006, 314-319.
  163. [163] H. He, & K. Kiguchi, A study on EMG-based control of exoskeleton robots for humanlower-limb motion assist, Int. Special Topic Conf. on Information Technology Applications inBiomedicine, Tokyo, Japan, 2007, 292-295.
  164. [164] K. Kiguchi, & Y. Imada, EMG-Based Control for Lower-Limb Power-Assist Exoskeletons,IEEE Workshop on Robotic Intelligence in Informationally Structured Space, Nashville, TN,USA, 2009, 19-24.
  165. [165] Y. Hayashi, & K. Kiguchi, A lower-limb power-assist robot with perception-assist, Proc.IEEE Conf. on Rehabilitation Robotics, Zurich, Switzerland, 2011, 5975445-5975445.
  166. [166] Y. Hayashi, & K. Kiguchi, Stairs-Ascending/Descending Assist for a Lower-Limb Power-Assist Robot Considering ZMP, Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, SanFrancisco, CA, USA, 2011, 1755–1760.
  167. [167] K. Kiguchi, A. Komori, & T. Kouno, A Study on Motion Modification Force in Perception-Assist for a Lower-Limb Power-Assist Exoskeleton, Proc. Int. Symposium on Soft Computingand Intelligent Systems, Kitakyushu, Japan, 2014, 1233-1237.
  168. [168] K. Kiguchi, & Y. Yokomine, Perception-Assist with A Lower-Limb Power-Assist Robot forSitting Motion, Proc. IEEE Conf. on Systems Man and Cybernetics, Kowloon, China, 2015,2390-2394.
  169. [169] T. Kawabata, H. Satoh, & Y. Sankai, Working Posture Control of Robot Suit HAL for ReducingStructural Stress, Proc. IEEE Conf. on Robotics and Biomimetics, Guilin, China, 2009,2013-2018.
  170. [170] H. Kawamoto, S. Taal, H. Niniss, T. Hayashi, K. Kamibayashi, K. Eguchi, & Y. Sankai,Voluntary Motion Support Control of Robot Suit HAL Triggered by Bioelectrical Signal forHemiplegia, Proc. IEEE Conf. on Engineering in Medicine and Biology Society, Buenos Aires,Argentina, 2010, 462-466.
  171. [171] Y. Chen, J. Hu,W.Wang, L. Peng, L. Peng, & Z.-G. Hou, An FES-assisted Training StrategyCombined with Impedance Control for a Lower Limb Rehabilitation Robot, Proc. IEEE Conf.on Robotics and Biomimetics , 2013, 2037-2042.
  172. [172] Y. Fan, & Y. Yin, Active and Progressive Exoskeleton Rehabilitation Using MultisourceInformation Fusion From EMG and Force-Position EPP, IEEE Transactions on Biomedical Engineering,60(12), 2013, 3314-3321.
  173. [173] H.-Y. Huang, J.-S. Chen, & C.-E. Huang, Toward the Gait Analysis and Control of a PoweredLower Limb Orthosis in Ascending and Descending Stairs, Procedia Engineering, 79,2014, 417-426.
  174. [174] L. Grazi, S. Crea, A. Parri, T. Yan, M. Cortese, F. Giovacchini, M. Cempini, G. Pasquini,S. Micera, & N. Vitiello, Gastrocnemius myoelectric control of a robotic hip exoskeleton, Proc.IEEE Conf. on Engineering in Medicine and Biology Society, Milan, Italy, 2015, 3881-3884.
  175. [175] N. Karavas, A. Ajoudani, N. Tsagarakis, J. Saglia, A. Bicchi, & D. Caldwell, Teleimpedancebased assistive control for a compliant knee exoskeleton, Robotics and AutonomousSystems, 73, 2015, 78-90.
  176. [176] J. R. Koller, D. A. Jacobs, D. P. Ferris, & C. D. Remy, Learning to walk with an adaptivegain proportional myoelectric controller for a robotic ankle exoskeleton, Journal of Neuroengineeringand Rehabilitation, 12, 2015, 97.
  177. [177] A. Shabani, & M. J. Mahjoob, Bio-signal interface for knee rehabilitation robot utilizing56EMG signals of thigh muscles, Proc. Int. Conf. on Robotics and Mechatronics, Tehran, Iran,2016, 228-233.
  178. [178] E. Ceseracciu, L. Tagliapietra, J. C. Moreno, G. Asin, A. J. del-Ama, S. Perez, E. Pinuela, A.Gil, & M. Reggiani, An EMG-informed Model to Evaluate Assistance of the Biomot CompliantAnkle Actuator, Wearable Robotics: Challenges and Trends, Biosystems and Biorobotics, 16(Springer, Cham) 260-264.
  179. [179] D. A.Winter, Anthropometry, Biomechanics and motor control of human movement, Chapter4, 17 Sep. 2009, pp. 51-74.

Important Links:

Go Back