Hang Dong, Ming Cong, and Heping Chen


  1. [1] C.F. Wu, S.K. Lin and J. Lambrecht, Integrated object and path demonstration for industrial robots in adaptive handling applications, 19th IEEE International Conference on Emerging Technologies and Factory Automation. Barcelona, Spain: Institute of Electrical and Electronics Engineers Inc., 2014.
  2. [2] H. Chen, F. Thomas, and X. Li, Automated industrial robot path planning for spray painting process: a review,4th IEEE Conference on Automation Science and Engineering, Washington, DC, United states: Inst. of Elec. and Elec. Eng. Computer Society, 2008.
  3. [3] F. Axel, S. Christopher B., D. Neil, Combined temperature and force control for robotic friction stir welding, Journal of Manufacturing Science and Engineering, 136(2)(2014), 021007021007-15.
  4. [4] W.You, M.Kong, and L.Sun, Control system design for heavy duty industrial robot, Industrial Robot: An International Journal, 39(4)(2012)365-380.
  5. [5] M. Sadeghzadeh, D. Calvert, and H.A. Abdullah, Autonomous visual servoing of a robot manipulator using reinforcement learning, International Journal of Robotics and Automation, 31(1), 2016, 26C38.
  6. [6] K.G. Shin and N.D. Mckay, Minimum-time control of robotic manipulators with geometric path constraints, IEEE Transactions on Automatic Control, 30(6)(1985)531-541.
  7. [7] T. Chettibi, H. Lehtihet, and M. Haddad , Minimum cost trajectory planning for industrial robots, European Journal of Mechanics A-solids, 23(4)(2004)703-715.
  8. [8] C. Zheng, Y. Su, and P.C. Muller, Simple online smooth trajectory generations for industrial systems, Mechatronics, 19(4)(2009)571C576.
  9. [9] W.Xu,C.Li,andX.Wang,Studyonnon-holonomic Cartesian path planning of a free-floating space robotic system, Advanced Robotics, 23(1-2)(2009)113-143.
  10. [10] H. Liu, X. Lai, and W. Wu, Time-optimal and jerk-continuous trajectory planning for robot manipulators with kinematic constraints, Robotics and computer-Integrated Manufacturing, 29(2)(2013)703-715.
  11. [11] Y.Liu,M.Cong,H.Dong,etal.,time-optimal motion planning for robot manipulator sbased on elitist genetic algorithm, International Journal of Robotics and Automation, 32(4), 2017, 396-405.
  12. [12] T.L. Mai, Y.N. Wang, and T. Ngo, Adaptive tracking control for robot manipulators using fuzzy wavelet neural networks, International Journal of Robotics and Automation,30(1),2015, 26C39.
  13. [13] A. Gasparetto, and V. Zanotto, A technique for time-jerk optimal planning of robot trajectories, Robotics and Computer-Integrated Manufacturing, 24(3)(2008)415-426.
  14. [14] S.Mike, Global manipulation planning in robot joint space with task constraints, IEEET ransactions on Robotics, 26(3)(2010)576-584.
  15. [15] W. Wu, S. Zhu, and S. Liu, Smooth joint trajectory planning for humanoid robots based on B-splines, 2009 IEEE International Conference on Robotics and Biomimetics, pp. 475-479, Guilin, China, 2009.
  16. [16] F. Liu and F. Lin, Time-jerk optimal planning of industrial robot trajectories, International Journal of Robotics and Automation, 31(1), 2016, 1C7.
  17. [17] H.Lin, A fast and unified method to find a minimum-jerk robot joint trajectory using particle swarm optimization, Journal of Intelligent and Robotic Systems, 75(3-4)(2014)379-392.
  18. [18] A. Piazzi and A. Visioli, Global minimum-jerk trajectory planning of robot manipulators. IEEE transactions on Industrial Electronics, 47(1)(2000)140-149.
  19. [19] C.Lin, and P.Chang, Formulation and optimization of cubic polynomial joint trajectories for industrial robots, IEEE Transactions on Automatic Control, 28(12)(1983)1066-1074.
  20. [20] A.Gasparetto, and V.Zanotto, Optimal trajectory planning for industrial robots, Advances in Engineering Software, 41(4)(2010)548-556.
  21. [21] P. Barre, R. Bearee, and P. Borne, Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems, Journal of Intelligent and Robotics Systems, 42(3)(2005)275-293.
  22. [22] P. Huang, Y. Xu and B. Liang, Global minimum-jerk trajectory planning of space manipulator, International Journal of Control Automation and Systems, 4(4)(2006)405-413.
  23. [23] R. Fung and Y. Cheng, Trajectory planning based on minimum absolute input energy for an LCD glass-handling robot, Applied Mathematical Modeling, 38(11-12)2837-2847.
  24. [24] F. Glen and S. Yury, Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators, Proceedings of IEEE International Conference on Robotics and Automation, vol.3, pp. 2755-2760, Minneapolis, MN, USA, 1996.
  25. [25] D. Constantinescu and E. Croft, Smooth and time-optimal trajectory planning for industrial manipulators along specified paths, Journal of Robotic Systems, 17(5)(2000)233-249.
  26. [26] A. Piazzi and A. Visioli, Global minimum-time trajectory planning of mechanical manipulators using interval analysis, International Journal of Control, 71(4)(1998)631-652.
  27. [27] K. Deb and A. Pratap, A fast and elitist multi objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2)(2002)182C197.
  28. [28] J. J. Durillo, A. J. Nebro and L. Francisco, On the effect of the steady-state selection scheme in multi-objective genetic algorithms, 5th International Conference on Evolutionary Multicriterion Optimization, pp. 183-197, Nantes, France, 2009.
  29. [29] A.Konak, D.W.Coitand, A.E.Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliability Engineering and System Safety, 91(9)(2006)992C1007.
  30. [30] Aravendan, M. and Panneerselvam, R., 2015. Development and Comparison of Hybrid Genetic Algorithms for Network Design Problem in Closed Loop Supply Chain. Intelligent Information Management, 7(06), p.313.
  31. [31] Gouda, B.K., 2006. Optimal robot trajectory planning using evolutionary algorithms (Doctoral dissertation, Cleveland State University).

Important Links:

Go Back