A NOVEL ABSTRACTION METHODOLOGY FOR INTERCONNECTED HYBRID SYSTEMS USING THE EQUIVALENCE CONCEPT

Yaser Shokri-Kalandaragh and Heidar Ali Talebi

References

  1. [1] P. Ballarini, H. Djafri, M. Duflot, S. Haddad, and N. Pekergin,Cosmos: a statistical model checker for the hybrid automatastochastic logic, in 2011 Eighth Int. Conf. on QuantitativeEvaluation of Systems (QEST), Aachen, Germany (Piscataway,NJ: IEEE, 2011), 143–144.
  2. [2] A. Summerville, J. Osborn, and M. Mateas, Charda: Causalhybrid automata recovery via dynamic analysis Proceedings ofthe Twenty-Sixth International Joint Conference on ArtificialIntelligence, Melbourne, Australia, 2017.
  3. [3] F. Debbat and L. Adouane, Formation control and role assignment of autonomous mobile robots in unstructured environment Control and Intelligent Systems, 44(2), 2016, 1–4.
  4. [4] F. Bouriachi and S. Kechida, Hybrid petri nets and hybrid automata for modeling and control of two adjacent oversaturatedintersections, Journal of Control, Automation and ElectricalSystems, 27(6), 2016, 646–657.
  5. [5] Y. Chen, W. Li, Y. Guo, and Y. Wu, Dynamic graph hybridautomata: A modeling method for traffic network, in 2015IEEE 18th International Conference on Intelligent Transportation Systems (ITSC), Gran Canaria, Spain (Piscataway, NJ:IEEE, 2015), 1396–1401.
  6. [6] J.-M. McNew, E. Klavins, and M. Egerstedt, Solving coverageproblems with embedded graph grammars, in Int. Workshopon Hybrid Systems: Computation and Control, Pisa, Italy(Berlin: Springer 2007), 413–427.
  7. [7] J.B. De Sousa and F.L. Pereira, Real-time hybrid control ofmultiple autonomous underwater vehicles, in Proc. of the 37thIEEE Conf. on Decision and Control, 1998, Tampa, FL, USA,vol. 3 (Piscataway, NJ: IEEE, 1998), 2645–2649.
  8. [8] K. Fregene, D. Kennedy, and D. Wang, Hica: A Frameworkfor Distributed Multiagent Control, 2001.
  9. [9] H. Li, F. Karray, O. Basir, and I. Song, A framework forcoordinated control of multiagent systems and its applications,IEEE Transactions on Systems, Man, and Cybernetics-PartA: Systems and Humans, 38(3), 2008, 534–548.
  10. [10] M.T. Khan, F.N. Izhar, F. Nasir, M.U. Qadir, and C.W.de Silva, Multi-robot cooperation framework based on artificialimmune system Control and Intelligent Systems, 43(3), 2015,159–168.
  11. [11] T.A. Henzinger, The theory of hybrid automata, in Verificationof Digital and Hybrid Systems (Berlin: Springer, 2000), 265–292.
  12. [12] P. Tabuada and G.J. Pappas, Hybrid abstractions that preservetimed languages, in Int. Workshop on Hybrid Systems: Computation and Control, Rome, Italy (Berlin: Springer, 2001),501–514.
  13. [13] J.E. Cury, B.H. Krogh, and T. Niinomi, Synthesis of supervisory controllers for hybrid systems based on approximatingautomata, IEEE Transactions on Automatic Control, 43(4),1998, 564–568.
  14. [14] J. Raisch and S.D. O’Young, Discrete approximation andsupervisory control of continuous systems, IEEE Transactionson Automatic Control, 43(4), 1998, 569–573.
  15. [15] R. Carter and E.M. Navarro-L´opez, Abstractions of hybridsystems: formal languages to describe dynamical behaviour,IFAC Proceedings Volumes, 44(1), 2011, 4552–4557.
  16. [16] G.E. Fainekos, A. Girard, and G.J. Pappas, Hierarchical synthesis of hybrid controllers from temporal logic specifications, inInt. Workshop on Hybrid Systems: Computation and Control,Pisa, Italy (Berlin: Springer, 2007), 203–216.
  17. [17] M.S. Boujelben, C. Rekik, and N. Derbel, A hybrid fuzzy-slidingmode controller for a mobile robot, International Journal ofModelling, Identification and Control, 25(3), 2016, 155–164.
  18. [18] O. Stursberg, Supervisory control of hybrid systems basedon model abstraction and guided search, Nonlinear Analysis:Theory, Methods & Applications, 65(6), 2006, 1168–1187.
  19. [19] P. Tabuada, G.J. Pappas, and P. Lima, Compositional abstractions of hybrid control systems, Discrete Event DynamicSystems, 14(2), 2004, 203–238.
  20. [20] Y. Shokri-Kalandaragh and H.A. Talebi, Controlled interconnected hybrid systems – a new framework for multi-agent systems, Mechatronic Systems and Control, 46(4), 2018, 157–162.
  21. [21] T. Adamek, C.A. Kitts, and I. Mas, Gradient-based clusterspace navigation for autonomous surface vessels, IEEE/ASMETransactions on Mechatronics, 20(2), 2015, 506–518.

Important Links:

Go Back