Semaan Amine, Ossama Mokhiamar, and Stephane Caro


  1. [1] R. Clavel, Delta, a fast robot with parallel geometry. Proc.of the Int. Symposium on Industrial Robot, Switzerland, 1988,91–100.
  2. [2] B. Hu, B. Mao, J. Yu, and Y. Lu, Unified stiffness model oflower mobility parallel manipulators with linear active legs,International Journal of Robotics and Automation, 29(1), 2014,DOI: 10.2316/Journal.206.2014.1.206-3807, 58–66.
  3. [3] Y. Xu, J. Yao, and Y. Zhao, Internal forces analysis ofthe active overconstrained parallel manipulators, International Journal of Robotics and Automation, 30(5), 2015, DOI:10.2316/Journal.206.2015.5.206-4422, 511–518.
  4. [4] L. Wang, D. Wang, and J. Wu, A control strategy of a 2-dof parallel manipulator with fractional order PDµ control,International Journal of Robotics and Automation, 32(4), 2017,DOI: 10.2316/Journal.206.2017.4.206-4861, 387–395.
  5. [5] Y. Fang and L.-W. Tsai, Structure synthesis of a class of4-DoF and 5-DoF parallel manipulators with identical limbstructures, The International Journal of Robotics Research,21(9), 2002, 799–810.
  6. [6] S.-J. Zhu and Z. Huang, Singularity analysis for a 5-DoFfully-symmetrical parallel manipulator 5-RRR(RR), IEEE Int.Conf. on Robotics and Automation, Roma, Italy, 2007.
  7. [7] S. Guo, C. Wang, H. Qu, and Y. Fang, A novel 4-RRCR parallelmechanism based on screw theory and its kinematics analysis,Proceedings of the Institution of Mechanical Engineers, PartC: Journal of Mechanical Engineering Science, 227(9), 2012,2039–2048.
  8. [8] P. Ben-Horin and M. Shoham, Singularity condition ofsix-degree-of-freedom three-legged parallel robots based onGrassmann–Cayley algebra, IEEE Transactions on Robotics,22(4), 2006, 577–590.
  9. [9] D. Kanaan, P. Wenger, S. Caro, and D. Chablat, Singularity analysis of lower-mobility parallel manipulators usingGrassmann–Cayley algebra, IEEE Transactions on Robotics,25(5), 2009, 995–1004.
  10. [10] S. Amine, M. Tale Masouleh, S. Caro, P. Wenger, and C.Gosselin, Singularity conditions of 3T1R parallel manipulatorswith identical limb structures, ASME Journal of Mechanismsand Robotics, 4(1), 2012, 1–11.
  11. [11] T. McMillan, Invariants of antisymmetric tensors, Ph.D. Thesis, University of Florida, Gainesville, Florida, USA, 1990.
  12. [12] K.H. Hunt, Kinematic geometry of mechanisms (Oxford:Clarendon Press, 1978).
  13. [13] X. Kong and C. Gosselin, Type synthesis of parallel mechanisms(Germany: Springer, 2007).
  14. [14] P. Wenger and D. Chablat, Kinematics analysis of a newparallel machine-tool: the Orthoglide, in Advances in robotkinematics (Dordrecht: Springer, 2000) 305–314.
  15. [15] S. Caro, W.A. Khan, D. Pasini, and J. Angeles, The rule-based conceptual design of the architecture of serial Schonflies-motion generators, Mechanism and Machine Theory, 45(2),2010, 251–260.
  16. [16] D. Zlatanov, I. A. Bonev, and C. Gosselin, Constraint singularities of parallel mechanisms, IEEE Int. Conf. on Roboticsand Automation, Washington, DC, 2002.

Important Links:

Go Back