OUTPUT FEEDBACK ADAPTIVE CONTROL OF DYNAMICALLY POSITIONED SURFACE VESSELS: A DISTURBANCE OBSERVER-BASED CONTROL APPROACH

Mohamadreza Homayounzade, and Milad Alipour Shahraki

References

  1. [1] M. Wondergem, E. Lefeber, K.Y. Pettersen, & H. Nijmeijer, Output feedback tracking of ships, IEEE Transactions on Control Systems Technology, 19(2), 2011, 442-448.
  2. [2] P. Svec , A. Thakur, E. Raboin, B. C. Shah, & S. K. Gupta, Target following with motion prediction for unmanned surface vehicle operating in cluttered environments, Autonomous Robots, 36(4), 2014, 383-405.
  3. [3] T.I. Fossen, & A. Grovlen, Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping, IEEE Transactions on Control Systems Technology, 6(1), 1998, 121-128.
  4. [4] C.C. De Wit, E. Olguin Diaz, & M. Perrier, Robust nonlinear control of an underwater vehicle/manipulator system with composite dynamics, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146), Leuven, Belgium, 1998, 452-457.
  5. [5] A. Robertsson, & R. Johansson, Comments on “Nonlinear output feedback control of dynamically positioned ships using vectorialbackstepping”, IEEE Transactions on Control Systems Technology, 6(3), 1998, 439-441.
  6. [6] T.I. Fossen, & J.P. Strand, Passive nonlinear observer design for ships using lyapunov methods: Full-scale experiments with a supply vessel, Automatica, 35(1), 1999, 3-16.
  7. [7] M. Wondergem, E. Lefeber, K.Y. Pettersen, & H. Nijmeijer, Output feedback tracking of ships. IEEE Transactions on Control Systems Technology, 19(2), 2011, 442-448.
  8. [8] S. Liu, D. Wang, & E, Poh, Output feedback control design for station keeping of AUVs under shallow water wave disturbances. International Journal of Robust and Nonlinear Control, 19(13), 2009, 1447-1470.
  9. [9] M. Loueipour, M. Keshmiri, M. Danesh, & M. Mojiri, Wave filtering and state estimation in dynamic positioning of marine vessels using position measurement. IEEE Transactions on Instrumentation and Measurement, 64(12), 2015, 3253-3261.
  10. [10] T. Sun, J. Zhang, & Y, Pan, Active Disturbance Rejection Control of Surface Vessels Using Composite Error Updated Extended State Observer. Asian Journal of Control, 19(5), 2017, 1802-1811.
  11. [11] O.K. Kjerstad, & R. Skjetne, Disturbance rejection by acceleration feedforward for marine surface vessels. IEEE Access, 4, 2016, 2656-2669.
  12. [12] M. Burger, A. Pavlov, & K.Y. Pettersen, Conditional integrators for path following and formation control of marine vessels under constant disturbances, Proceedings of the 8th IFAC International Conference on Manoeuvring, 42(18), Guaruja (SP), Brazil, 2009, 179-184.
  13. [13] M. Fu, L, Yu, & Y. Tuo, Extended state observer-based distributed formation control for autonomous surface vessels with uncertain disturbances. International Journal of Robotics and Automation, 33(1), 2018.
  14. [14] D. Zhu, M. Mei & B. Sun, The tracking control of unmanned underwater vehicles based on model predictive control, International Journal of Robotics and Automation, 32(4), 2017.
  15. [15] G. Xia, A. Zhao, H, Wu, & J. Liu, Adaptive robust output feedback trajectory control for ships with input nonlinearities, International Journal of Robotics and Automation, 31(4), 2016.
  16. [16] Y. Wang, Y. Tuo, S.X. Yang, & M. Fu, Nonlinear model predictive control of dynamic positioning of deep-sea ships with a unified model, International Journal of Robotics and Automation, 31(6), 2016.
  17. [17] T.I. Fossen, Handbook of Marine Craft Hydrodynamics and Motion Control, 1 (Trondheim, Norway: Wiley, 2011).
  18. [18] Y. Fang, E. Zergeroglu, M.S. De Queiroz, & D.M. Dawson, Global output feedback control of dynamically positioned surface vessels: an adaptive control approach, Mechatronics, 14(4), 2004, 341-356.

Important Links:

Go Back