MONITORING-BASED VISUAL SERVOING OF WHEELED MOBILE ROBOTS

Chenghao Yin, Baoquan Li, Wuxi Shi, and Ning Sun

References

  1. [1] Y. Liu, R. Xiong, Y. Wang, H. Huang, X. Xie, X. Liu, and G. Zhang, “Stereo visual-inertial odometry with multiplekalman filters ensemble,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6205􀀀6216, Oct. 2016.
  2. [2] H. J. Asl, M. Yazdani, and J. Yoon, “Vision-based tracking control of quadrotor using velocity of image features,” Int. J.Robot. Autom., vol. 31, no. 4, pp. 301􀀀309, 2016.
  3. [3] H. Zhao, Y. Liu, X. Xie, Y. Liao, and X. Liu, “Filtering based adaptive visual odometry sensor framework robust to blurredimages,” Sensors, vol. 16, no. 7, pp. 1040, Jul. 2016.
  4. [4] G. Hu, W. P. Tay, and Y. Wen, “Cloud robotics: architecture, challenges and applications,” IEEE Netw., vol. 26, no. 3, pp.21-28, May 2012.
  5. [5] H. Chen, C. Wang, X. J. Li, and D. Sun, “Transportation of multiple biological cells through saturation-controlled opticalteezers in crowded microenvironments,” IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 888-899, Apr. 2016.
  6. [6] B. Li, Y. Fang, and X. Zhang, “Essential-matrix-based visual servoing of mobile robots without short baseline degeneration,”Int. J. Robot. Autom., vol. 30, no. 4, pp. 397-406, 2015
  7. [7] G. L. Mariottini, G. Oriolo, and D. Prattichizzo, “Image-based visual servoing for nonholonomic mobile robots usingepipolar geometry,” IEEE Trans. Robot., vol. 23, no. 1, pp. 87-100, Feb. 2007.
  8. [8] P. Salaris, A. Cristofaro, and L. Pallottino, “Epsilon-optimal synthesis for unicycle-like vehicles with limited field-of-viewsensors,” IEEE Trans. Robot., vol. 31, no. 6, pp. 1404-1418, Dec. 2015.
  9. [9] B. P. Larouche and Z. H. Zhu, “Position-based visual servoing in robotic capture of moving target enhanced by kalmanfilter,” Int. J. Robot. Autom., vol. 30, no. 3, pp. 267-277, 2015.
  10. [10] B. Tamadazte, N. L. Piat, and E. Marchand, “A direct visual servoing scheme for automatic nanopositoning,” IEEE/ASMETrans. Mechatronics, vol. 17, no. 4, pp. 728􀀀736, Aug. 2012.
  11. [11] H. Wang, D. Guo, H. Xu, W. Chen, T. Liu, and K. Leang, “Eye-in-hand tracking control of free-floating space manipulator,”IEEE Trans. Aerospace. Electron Syst., vol. 53, no. 4, pp. 1855-1865, 2017.
  12. [12] S. Y. Chen, J. Zhang, H. Zhang, N. M. Kowk, and Y. F. Li, “Intelligent lighting control for vision-based roboticmanipulation,” IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3254􀀀3263, Aug. 2012.
  13. [13] H. Wang, B. Yang, Y. Liu, W. Chen, X. Liang, and R. Pfeifer, “Visual servoing of soft robot manipulator in constrainedenvironments with an adaptive controller,” IEEE/ASME Trans. Mechatronics, vol. 22, no. 1, pp. 41􀀀50, Feb. 2017.
  14. [14] H. M. Becerra, G. Lopez-Nicolas, and C. Sagues,“Asliding-mode-control law for mobile robots based on epipolar visualservoing from three views,” IEEE Trans. Robot., vol. 27, no. 1, pp. 175􀀀183, Feb. 2011.
  15. [15] X. Zhang, Y. Fang, and N. Sun, “Visual servoing of mobile robots for posture stabilization: from theory to experiments,”Int. J. Robust Nonlinear Control., vol. 25, no. 1, pp. 1-15, Jan. 2015.
  16. [16] X. Zhang, Y. Fang, and X. Liu, “Motion-estimation-based visual servoing of nonholonomic mobile robots,” IEEE Trans.Robot., vol. 27, no. 6, pp. 1167􀀀1175, Dec. 2011.
  17. [17] N. Sun, T. Yang, Y. Fang, B. Lu, and Y. Qian, “Nonlinear motion control of underactuated three-dimensional boom cranesystems with hardware experiments,” IEEE Trans. Ind. Inform., vol. 14, no. 3, pp. 887-897, Mar. 2018.
  18. [18] J. Chen, B. Jia, and K. Zhang, “Trifocal tensor-based adaptive visual trajectory tracking control of mobile robots,” IEEETrans. Cybernetics, vol. 47, no. 11, pp. 3784􀀀3798, Nov. 2017.
  19. [19] R. Brockett, “The early days of geometric nonlinear control,” Automatica, vol. 50, no. 9, pp. 2203-2224, Sep. 2014.
  20. [20] N. Sun, Y. Fang, H. Chen, Y. Fu, and B. Lu, “Nonlinear stabilizing control for ship-mounted cranes with disturbancesinduced by ship roll and heave movements: design, analysis, and experiments,” IEEE Trans. Syst. Man Cybern.: Syst.,online published, DOI: 10.1109/TSMC.2017.2700393.
  21. [21] P. Murrieri, D. Fontanelli, and A. Bicchi, “A hybrid-control approach to the parking problem of a wheeled vehicle usinglimited view-angle visual feedback,” Int. J. Robot. Res., vol. 23, no. 4-5, pp. 437-448, 2004.
  22. [22] A. D. Luca, G. Oriolo, and P. R. Giordano, “Feature depth observation for image-based visual servoing: theory andexperiments,” Int. J. Robot. Res., vol. 27, no. 10, pp. 1093-1116, Oct. 2008.
  23. [23] Y. Fang, X, Liu, and X. Zhang, “Adaptive active visual servoing of nonholonomic mobile robots,” IEEE Trans. Ind.Electron., vol. 59, no. 1, pp. 486􀀀497, Jan. 2012.
  24. [24] N. Sun, Y. Wu, Y. Fang, and H. Chen, “Nonlinear antiswing control for crane systems with double-pendulum swingeffects and uncertain parameters: design and experiments,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1413-1422,Jul. 2018.
  25. [25] A. P. Dani, N. R. Fischer, and W. E. Dixon, “Single camera structure and motion,” IEEE Trans. Autom. Control, vol. 57,no. 1, pp. 241􀀀246, Jan. 2012.
  26. [26] D. Chwa, A. P. Dani, and W. E. Dixon, “Range and motion estimation of a monocular camera using static and movingobjects,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1174􀀀1183, Jul. 2016.
  27. [27] W. MacKunis, N. Gans, A. Parikh, and W. E. Dixon, “Unified tracking and regulation visual servo control for wheeledmobile robots,” Asian J. Control., vol. 16, no. 3, pp. 669-678, May. 2014.
  28. [28] Z. Li, C. Yang, C.-Y. Su, J. Deng, and W. Zhang, “Vision-based model predictive control for steering of a nonholonomicmobile robot,” IEEE Trans. Control Syst. Technol., vol. 24, no. 2, pp. 553-564, Mar. 2016.
  29. [29] X. Zhang, Y. Fang, B. Li, and J. Wang, “Visual servoing of nonholonomic mobile robots with uncalibrated camera-to-robotparameters,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 390-400, Jan. 2017.
  30. [30] B. Li, Y. Fang, and X. Zhang, “Visual servo regulation of wheeled mobile robots with an uncalibrated onboard camera,”IEEE/ASME Trans. Mechatronics, vol. 21, no. 5, pp. 2330-2342, Oct. 2016.
  31. [31] Z. Ma and J. Su, “Robust uncalibrated visual servoing control based on disturbance observer,” ISA Transactions, vol. 59,pp. 193-204, Nov. 2015.
  32. [32] M. Liu, C. Pradalier, and R. Siegwart, “Visual homing from scale with an uncalibrated omnidirectional camera,” IEEETrans. Robot., vol. 29, no. 6, pp. 1353-1365, Dec. 2013.
  33. [33] J. J. Craig, Introduction to robotics: mechanics and control, 3rd ed., NJ: Prentice-Hall, 2005.
  34. [34] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines of code,” Int. J. Comput. Vis., vol. 15, no. 1, pp.123-141, Jun. 1995.
  35. [35] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, “Closed loop steering of unicycle-like vehicles via Lyapunovtechniques,” IEEE Robot. Autom. Mag., vol. 2, no. 1, pp. 27-35, Mar. 1995.
  36. [36] W. He and Y. Dong, “Adaptive fuzzy neural network control for a constrained robot using impedance learning,” IEEETrans. Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1174-1186, Apr. 2018.
  37. [37] T. Meng and W. He, “Iterative learning control of a robotic arm experiment platform with input constraint,” IEEE Trans.Ind. Electron., vol. 65, no. 1, pp. 664􀀀672, Apr. 2017.
  38. [38] S. Zhang, Y. Dong, Y. Ouyang, Z. Yin and K. Peng, “Adaptive neural control for robotic manipulators with outputconstraints and uncertainties,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11, pp. 5554􀀀5564, Nov. 2018.
  39. [39] Z. Zhu, W. Zou, Q. Wang, and F. Zhang, “A velocity compensation visual servo method for oculomotor control of bioniceyes,” Int. J. Robot. Autom., vol. 33, no. 1, 2018.
  40. [40] L. Wang and C. Luo, “A hybrid genetic tabu search algorithm for mobile robot to solve as/rs path planning,” Int. J. Robot.Autom., vol. 33, no. 2, 2018.

Important Links:

Go Back