SEGMENTATION METHOD OF HIGH RESOLUTION REMOTE SENSING IMAGE FOR FAST TARGET RECOGNITION

Chenming Li, Hongmin Gao, Yao Yang, Xiaoyu Qu, and Wenjing Yuan

References

  1. [1] Xu G, Li X, BangjunLei, et al, Unsupervised Color Image Segmentation with Color-alone FeatureUsing Region Growing Pulse Coupled Neural Network, Neurocomputing, 2018.
  2. [2] Zhou D, Shao Y. Region growing for image segmentation using an extended PCNN model, IetImage Processing, 2018, 12(5):729-737.
  3. [3] Shen J, Han L, Xu M, et al. Focused-Region Segmentation for Refocusing Images from Light Fields,Journal of Signal Processing Systems, 2018:1-13.
  4. [4] Chen J, Guan B, Wang H, et al. Image thresholding segmentation based on two dimensionalhistogram using gray level and local entropy information, IEEE Access, 2017, PP(99):1-1.
  5. [5] Liang Z, Chen Y. Closed-loop detection algorithm using visualwords, International Journal ofRobotics & Automation, 2014, 29(2).
  6. [6] Wang L, Ye X F, Wang G, et al. A fast hierarchical MRF sonar image segmentation algorithm,International Journal of Robotics & Automation, 2017, 32(1):48-54.
  7. [7] Zhao F, Liu H, Fan J, et al. Intuitionistic fuzzy set approach to multi-objective evolutionaryclustering with multiple spatial information for image segmentation, Neurocomputing, 2018.
  8. [8] Satapathy S C, Raja N S M, Rajinikanth V, et al. Multi-level image thresholding using Otsu andchaotic bat algorithm, Neural Computing & Applications, 2016:1-23.
  9. [9] Rapaka S, Kumar PR. Efficient approach for non-ideal iris segmentation using improved particleswarm optimisation-based multilevel thresholding and geodesic active contours, Iet ImageProcessing, 2018, 12(10):1721-1729.
  10. [10] Li J, Tang W, Wang J, et al. Multilevel thresholding selection based on variational modedecomposition for image segmentation, Signal Processing, 2018, 147:80-91.
  11. [11] SHEN Yan, ZHANG Xiao-ming, HAN Kai-ge, JIANG Jin. Research of image segmentationtechnology based on PCNN, Modern Electronics Technique, 2014(2):38-41.
  12. [12] Wei S, Hong Q, Hou M. Automatic image segmentation based on PCNN with adaptive thresholdtime constant, Neurocomputing, 2011, 74(9):1485-1491.
  13. [13] ZHOU Xue-qi. Study of Image Segmentation Based on Pulse Coupled Neural Networks, BeijingJiaotong University, 2016.
  14. [14] Zhou D, Gao C, Guo Y. A coarse-to-fine strategy for iterative segmentation using simplifiedpulse-coupled neural network, Soft Computing, 2014, 18(3):557-570.
  15. [15] Szekely A G, Lindblad T. Parameter adaptation in a simplified pulse-coupled neural network, TheWorkshop on Virtual Intelligence/dynamic Neural Networks: Neural Networks Fuzzy Systems.International Society for Optics and Photonics, 1999:278-285.
  16. [16] Zhou D, Zhou H, Gao C, et al. Simplified parameters model of PCNN and its application to imagesegmentation, Pattern Analysis & Applications, 2016, 19(4):939-951.
  17. [17] Xiao Z, Shi J, Chang Q. Image Segmentation with Simplified PCNN, International Congress onImage and Signal Processing. IEEE, 2009:1-4.
  18. [18] Na Y, Chen H, Yanfeng L I, et al. Coupled Parameter Optimization of PCNN Model and VehicleImage Segmentation, Journal of Transportation Systems Engineering & Information Technology,2012, 12(1):48-54.
  19. [19] Chen Y, Park S K, Ma Y, et al. A New Automatic Parameter Setting Method of a Simplified PCNNfor Image Segmentation, IEEE Transactions on Neural Networks, 2011, 22(6):880-892.
  20. [20] HUANG Guo-feng. Research on Image Segmentation Algorithm Based on Pulse Coupled NeuralNetwork, Xidian University, 2013.
  21. [21] Yi-De M A, Dai R L, Lian L I. Automated image segmentation using pulse coupled neural networksand image’s entrop, Journal of China Institute of Communications, 2002, 23(1):46-50.
  22. [22] Li C H, Lee C K. Minimum cross entropy thresholding, Pattern Recognition, 1993, 26(4):617-625.
  23. [23] Li C H, Tam P K S. An iterative algorithm for minimum cross entropy thresholding, PatternRecognition Letters, 1998, 19(8):771-776.
  24. [24] Brink A D, Pendock N E. Minimum cross-entropy threshold selection, Pattern Recognition, 1996,29(1):179-188.
  25. [25] NIE Ren-can. Research on Theory Analysis and Applications for Critical Characteristics PulseCoupled Neural Network, Yunnan University, 2013.

Important Links:

Go Back