CONSENSUS TRACKING FOR NONLINEAR FRACTIONAL-ORDER MULTI AGENT SYSTEMS USING ADAPTIVE SLIDING MODE CONTROLLER

Zahra Yaghoubi, Heidar Ali Talebi

References

  1. [1] Q. Hui, and W. M. Haddad, Distributed nonlinear control algorithms for network consensus, Automatica, 44(9), 2008, 2375-2381.
  2. [2] G. Wen, G. Hu, W. Yu, J. Cao, et. al., Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs, Systems & Control Letters, 62(12), 2013, 1151-1158.
  3. [3] Y. V. Karteek, I. Kar, and S. Majhi, Consensus of multi-agent systems using back-tracking and history following algorithms, International Journal of Robotics and Automation, 32(4), 2017.
  4. [4] H. Wang, L. Ji, and Z. Zhou, ESO-based consensus of multiple Euler-Lagrange systems under a fixed or switching topology, Control and Intelligent Systems, 45(2), 2017.
  5. [5] Y. Cao, and W. Ren, Distributed coordinated tracking with reduced interaction via a variable structure approach, IEEE Transactions on Automatic Control, 57(1) , 2012, 33-48.
  6. [6] W. Ren, and Y. Cao, Distributed coordination of multi-agent networks. Communications and control engineering series, Springer-Verlag, London, 2011.
  7. [7] I. N’Doye, M. Darouach, M. Zasadzinski, and N.-E. Radhy, Robust stabilization of uncertain descriptor fractional-order systems, Automatica, 49(6) , 2013, 1907-1913.
  8. [8] H. Delavari, D. Baleanu, and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dynamics, 67(4) , 2012, 2433-2439.
  9. [9] J. Yu, H. Hu, S. Zhou, and X. Lin, Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems, Automatica, 49(6) , 2013, 1798-1803.
  10. [10] Y.-H. Lan, H.-B. Gu, C.-X. Chen, Y. Zhou, et. al., An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks, Neurocomputing, 136, 2014, 235-242.
  11. [11] X. Yin, and S. Hu, Consensus of fractional‐order uncertain multi‐agent systems based on output feedback, Asian Journal of Control, 15(5) , 2013, 1538-1542.
  12. [12] Z. Yu, H. Jiang, and C. Hu, Leader-following consensus of fractional-order multi-agent systems under fixed topology, Neurocomputing, 149, 2015, 613-620.
  13. [13] Y. Cao, and W. Ren, Distributed formation control for fractional-order systems: Dynamic interaction and absolute/relative damping, Systems & Control Letters, 59(3-4), 2010, 233-240.
  14. [14] R. Dong, Consensus tracking for multiagent systems with nonlinear dynamics, The Scientific World Journal, 2014, 2014.
  15. [15] G.-H. Xu, M. Chi, D.-X. He, Z.-H. Guan, et. al., Fractional-order consensus of multi-agent systems with event-triggered control, Control & Automation (ICCA), 11th IEEE International Conference on. IEEE, 2014, 619-624.
  16. [16] G. Wen, Z. Peng, A. Rahmani, and Y. Yu, Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics, International Journal of Systems Science, 45(9) , 2014, 1892-1901.
  17. [17] S. Shoja-Majidabad, H. Toosian-Shandiz, and A. Hajizadeh, Robust fractional-order control of PMSG-based WECS, International Journal of Automation and Control, 9(2) , 2015, 107-129.
  18. [18] C. Yin, Y. Chen, and S.-m. Zhong, Fractional-order sliding mode based extremum seeking control of a class of nonlinear systems, Automatica, 50(12) , 2014, 3173-3181.
  19. [19] Z. Li, Z. Duan, G. Chen, and L. Huang, Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint, IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1) , 2010, 213-224.
  20. [20] P. DeLellis, M. Di Bernardo, T. E. Gorochowski, and G. Russo, Synchronization and control of complex networks via contraction, adaptation and evolution, IEEE Circuits and Systems Magazine, 10(3), 2010, 64-82.
  21. [21] G. Ren, and Y. Yu, Consensus of Fractional Multi‐Agent Systems Using Distributed Adaptive Protocols, Asian Journal of Control, 19(6) , 2017, 2076-2084.
  22. [22] Y. Li, Y. Chen, and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability, Computers & Mathematics with Applications, 59(5), 2010, 1810-1821.
  23. [23] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation, 19(9), 2014, 2951-2957.

Important Links:

Go Back