Shoujiang Xu, Edmond S. L. Ho and Hubert P. H. Shum


  1. [1] G. Li, S. Tong, F. Cong, A. Yamashita, et al., Improved artificial potential field-based simultaneousforward search method for robot path planning in complex environment, Proc. 2015 IEEE/SICEInternational Symposium on System Integration (SII), Nagoya, Japan, 2015, 760–765.
  2. [2] Z. Wu, L. Feng, Obstacle prediction-based dynamic path planning for a mobile robot. InternationalJournal of Advancements in Computing Technology, 4(3), 2012, 118-124.
  3. [3] J.S Oh, Y. H. Choi, J. B. Park, &Y.F. Zheng, Complete coverage navigation of cleaning robots usingtriangular-cell-based map, IEEE Transactions on Industrial Electronics, 51(3), 2004, 718-726.
  4. [4] O. Takahashi, and R. J. Schilling, Motion planning in a plane using generalized voronoi diagrams,IEEE Transactions on Robotics and Automation, 5(2), 1989, 143-150.
  5. [5] D. J. Bennet, C. R. McInnes, Distributed control of multi-robot systems using bifurcating potentialfields, Robotics and Autonomous Systems, 58(3), 2010, 256-264.
  6. [6] C. Cai and S. Ferrai, Information-driven sensor path planning by approximate cell decomposition,IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(3), 2009, 672-689.
  7. [7] A. Mohammadi, M. Rahimi, & A. A. Suratgar, A new path planning and obstacle avoidance algorithmin dynamic environment, Proc. The 22nd Iranian Conf. on Electrical Engineering, Tehran, Iran, 2014,1301-1306.
  8. [8] H. Miao, Y. Tian, Dynamic robot path planning using an enhanced simulated annealing approach,Applied mathematics and computation, 222, 2013, 420-237.
  9. [9] H. Lee, T. Yaniss, B.Lee, Grafting: a path replanning technique for rapidly-exploring random trees indynamic environments, Advanced Robotics, 26(18), 2012, 2145-2168.
  10. [10] N. A. Shitagh, L. D. Jalal, Path planning of intelligent mobile robot using modified genetic algorithm,International Journal of Soft Computing and Engineering(IJSCE), 3(2), 2013, 31-36.
  11. [11] A. M. Rao, K. Ramji, B. S. K. Sundadra Siva Rao, V. Vasa, et al., Navigation of non-holonomicmobile robot using neuro-fuzzy Logic with integrated safe boundary, International Journal ofAutomation and Computing, 14(3), 2017, 285-294.
  12. [12] L. Deng, X. Ma, J. Gu, Y. Li, Multi-robot Dynamic Formation Path Planning with ImprovedPolyclonal Artificial Immune Algorithm, Control and Intelligent Systems, 42(4), 2014, 1-4.
  13. [13] M. T. Khan, M. U. Qadir, A. Abid, F. Nasir, et al., Robot Fault Detection Using an Artificial ImmuneSystem, Control and Intelligent Systems, 43(2), 2015, 129-132.
  14. [14] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agent,IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 26(1), 1996, 29-41.
  15. [15] Y. He, Q. Zeng, J. Liu, G. Xu, et al., Path planning for indoor UAV Based on ant colonyOptimization, Proc. 25th Chinese Control and Decision Conf.(CCDC), Guiyang, China, 2013,2919-2923.
  16. [16] Y. Miao, A. M. Khamis, F. Karray, M. S. Kamel, A Novel Approach to Path Planning forAutonomous Mobile Robots, Control and Intelligent Systems, 39(4), 2011, 235-244.
  17. [17] I. Châari, A. Koubaa, S. Trigui, H. Bennaceur, et al., SmartPATH: An efficient hybrid ACO-GAalgorithm for solving the global path planning problem of mobile robots, International Journal ofAdvanced Robotics System, 11(7), 2014,1-15.
  18. [18] Y. Zhang, Z. Liu, L. Chang, A New Adaptive Artificial potential field and rolling window method formobile robot path planning, Proc. 29th Chinese Control and Decision Conf.(CCDC), Chongqing,China, 2017, 7714-7718.
  19. [19] F. Zhou, Rolling path plan of mobile robot based on automatic diffluent ant algorithm, InternationalJournal of Robotics and Automation, 3(2), 2014, 112-117.
  20. [20] Q. Zhu, J. Hu, W. Cai, et al., A new robot navigation algorithm for dynamic unknown environmentsbased on dynamic path re-computation and an improved scout ant algorithm, Applied Soft computing,11(8), 2011, 4667-4676.

Important Links:

Go Back