Nonsingular Fast Terminal Sliding Mode Control for Hydraulic Servo Position System of Rolling Mill Based on Improved Extended State Observer

Xiaogang Li, Yiming Fang, Le Liu


  1. [1] H. A. Mintsa, R. Venugopal, J. P. Kenne, et al. Feedback linearization-based position control of an electrohydraulic servo system with supply pressure uncertainty[J]. IEEE Transactions on Control SystemsTechnology, 2012, 20(4): 1092-1099.
  2. [2] R. Ghazali, Y. M. Sam, M. F. Rahmat, et al. Position tracking control of an electro-hydraulic servo systemusing sliding mode control[C]. Research and Development (SCOReD), 2010 IEEE Student Conference on.IEEE, 2010: 240-245.
  3. [3] A. Bonchis, P. I. Corke, D. C. Rye, et al. Variable structure methods in hydraulic servo systems control [J].Automatic, 2001, 37(4): 589-595.
  4. [4] C. Guan, S. A. Zhu. Adaptive differential and integral sliding mode adaptive control for a class of nonlinearsystems and its application in electro hydraulic servo system[J]. Chinese Journal of Electrical Engineering,2005, 25(4): 103-108.
  5. [5] Qian D W, Yi J Q, Liu X J, et al. Robust Control by Sliding Mode for a Class of Uncertain UnderactuatedSystems with Saturation.[J]. Control & Intelligent Systems, 2010, 38(2):87-94.
  6. [6] Yao J, Zhu X, Zhou Z. The design of sliding mode control system based on backstepping theory for BTTUAV[J]. Control & Intelligent Systems, 2009, 36(4).
  7. [7] Lin J S, Lum K Y, Hung G W. Fuzzy-grey reaching law sliding mode control for photovoltaics maximumpower point tracking[J]. Control & Intelligent Systems, 2014, 42(2).
  8. [8] Y. Yang. Adaptive fuzzy variable structure control of hydraulic servo system[J]. Electronic journal, 2008,36(1): 86-89.
  9. [9] R. J. Wai, C. M. Lin, C. F. Hsu. Adaptive fuzzy sliding-mode control for electrical servo drive[J]. Fuzzy Sets& Systems, 2004, 143(2): 295-310.
  10. [10] W. W. Zhang, J. Wang. Nonsingular Terminal sliding model control based on exponential reachinglaw[J ].Control and decision , 2012, 27(6):909-913.
  11. [11] Shao N. Binocular visual coordinated tracking control fora multi-robot system based on terminal slidingmode[J]. Control & Intelligent Systems, 2016, 44(4):161-169.
  12. [12] H. X. Zhang, J. S. Fan, F. Meng, et al. A new double power reaching law for sliding mode control[J].Control and decision, 2013, 28(2):289-293.
  13. [13] J. Y. Yao, J. Z. Jiao, D. W. Wei. Extended-state-observer-based output feedback nonlinear robust control ofhydraulic systems with backstepping[J]. IEEE Transactions on Industrial Electronics, 2014, 61(61):6285-6293.
  14. [14] H. L. Xing, D. H. Li, J. Li. Linear extended state observer based sliding mode disturbance decouplingcontrol for nonlinear multivariable systems with uncertainty[J]. International Journal of Control,Automation and Systems, 2016, 14(4):967-976.
  15. [15] Q. Chen, Y. R. Nan, K. X. Xing .Adaptive sliding-mode control of chaotic permanent magnet synchronousmotor system based on extended state observer. [J]. Acta Phys. Sin, 2014, 63(22): 113-120.
  16. [16] Z. Pu, R. Yuan, J. Yi, et al. A class of adaptive extended state observers for nonlinear disturbed systems [J].IEEE Transactions on Industrial Electronics, 2015, 62(9): 5858-5869.
  17. [17] T. Zhou. Extended state observer based on inverse hyperbolic sine function [J]. Control and decision, 2015,30(5): 943-946.
  18. [18] C. Guan, S. Pan. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknownparameters[J]. Control Theory & Applications, 2008, 16(11):1275-1284.
  19. [19] Z.J. Kang, X. Y. Chen. A design method for nonlinear extended state observer [J]. Journal of motor andcontrol, 2001, 5(3):199-203
  20. [20] P. Zhao, M. L. Yao, X. W. Shen, et al. Non singular fast terminal sliding mode liquid level tracking control[J]. Journal of Xi'an Jiaotong University, 2011, 45(12): 39-44.

Important Links:

Go Back