NEAREST NEIGHBOR GRADIENT ALGORITHM IN SUBSPACE PREDICTIVE CONTROL UNDER FAULT CONDITION

Xi-Guang Dong , Xiao-yong Guo, Jian-Hong Wang

References

  1. [1] A.Chiuso. The role of vector autoregressive modeling in predictor based subspace identification. Automatica,2007, 43(6): 1034-1048.
  2. [2] A.Chiuso. On the relation between CCA and predictor based subspace identification. IEEE Transactions ofAutomatic Control, 2008, 52(10): 1795-1811.
  3. [3] Wang Jianhong. Application of subspace predictive control in active noise and vibration control. Journal ofVibration and Shock, 2011, 30(10): 129-135.
  4. [4] Wang Jianhong. Application of ellipsoid optimization in subspace predictive control. Journal of AppliedScience, 2010, 28(4): 424-429.
  5. [5] Wang Jianhong. Fast gradient algorithm in subspace predictive control under fault estimation. Journal ofShanghai Jiaotong University, 2013, 47(7): 1015-1021.
  6. [6] Ljung, L. System identification: Theory for the user: Prentice Hall. 1999.
  7. [7] Boyd S, L Vandenberghe. Convex optimization: UK: Cambridge University Press,2008.
  8. [8] Melanie Zeilinger. Real time suboptimal model predictive control using a combination of explicit MPC andonline optimization. IEEE Transactions of Automatic Control, 2011, 56(7): 1524-1534.
  9. [9] Jakob K. A design algorithm using external perturbation to improve iterative feedback tuning convergence.Automatica, 2011, 47(2): 2665-2670.
  10. [10] Christian Feller. An improved algorithm for combinatorial multi-parameteric quadratic programming.Automatica, 2013, 49(5): 1370-1376.
  11. [11] M Casini, A Garulli, A Vicino. A linear programming approach to online set membership parameterestimation for linear regression models, International Journal of Adaptive Control and Signal Processing,2017, 31(3): pp. 360-378.
  12. [12] X Zhang, M Kamgarpour, A Georghiou. Robust optimal control with adjustable uncertainty sets, Automatica,2017, 75(1): 249-259.
  13. [13] Marko Tanaskovic, Lorenzo Fagiano, Carlo Novara. Data driven control of nonlinear systems: an on linedirect approach, Automatica, 2017, 75(1): 1-10.
  14. [14] Carlo Novara, Simone Formentin, Sergio M Savaresi. Data driven design of two degrees of freedomnonlinear controllers, Automatica, 2016, 72(10): 19-27.
  15. [15] Monika Blackman, Rahul Sharma. Model based control of utility scale wind turbines, Control and intelligentsystems, 2017, 45(1): 1-9.
  16. [16] Rana J Mascod, Adaptive VRFT based on MFAC for the speed control of PMDC motor, Control andintelligent systems, 2017, 45(2): 30-40.

Important Links:

Go Back