FINITE TIME STABILITY OF DISCRETE MARKOVIAN JUMP SYSTEM OVER NETWORKS WITH RANDOM DUAL-DELAY

Zhen Zhou, Hongbin Wang, Zhongquan Hu, and Xiaojun Xue

References

  1. [1] Chen H., Gao J., Shi T., Lu R. H∞ control for networked control systems with time delay, data packet dropoutand disorder[J]. Neurocomputing, 2016, 179: 211-218.
  2. [2] Cao Y., Yu W., Ren W., Chen G. An overview of recent progress in the study of distributed multi-agentcoordination[J]. IEEE Transactions on Industrial Informatics, 2013, 9(1): 427-438.
  3. [3] Wang H., Ji L., Zhou Z. ESO-Based consensus of multiple Euler-Lagrange systems under a fixed or switchingtopology[J]. Control and Intelligent Systems, 2017, 45(2):1-8.
  4. [4] Li H., Wu L., Li J., Sun F., Xia Y. Stabilization and separation principle of networked control systems using theT-S fuzzy model approach[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5): 1832-1843.
  5. [5] Saravanakumar R., Ali M S, Hua M. H∞ state estimation of stochastic neural networks with mixedtime-varying delays[J]. Soft Computing, 2016, 20(9):3475-3487.
  6. [6] Syed Ali M, Saravanakumar R, Cao J. New passivity criteria for memristor-based neutral-type stochastic BAMneural networks with mixed time-varying delays[J]. Neurocomputing, 2016, 171(C):1533-1547.(DOI: 10.2316/J.2019.201-3037)
  7. [7] Huang C., Bai Y., Liu X. H∞ state feedback control for a class of networked cascade control systems withuncertain delay[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1): 62-72.
  8. [8] Khanesar M A, Kaynak O., Yin S., Guo H. Adaptive indirect fuzzy sliding mode controller for networkedcontrol systems subject to time-varying network-induced time delay[J]. IEEE Transactions on Fuzzy Systems, 2015,23(1): 205-214.
  9. [9] Yin X., Li Z., Zhang L., Wang C., Shammakh W, Ahmad B. Model reduction of a class of Markov jumpnonlinear systems with time-varying delays via projection approach[J]. Neurocomputing, 2015, 166: 436-446.
  10. [10] Xiong J., Lam J. Stabilization of discrete-time Markovian jump linear systems via time-delayed controllers[J].Automatica, 2006, 42(5):747-753.
  11. [11] Liu M., Daniel W. C. Ho, Niu Y. Stabilization of Markovian jump linear system over networks with randomcommunication delay[J]. Automatica, 2008, 45(5): 416-421.
  12. [12] Saravanakumar R., Syed A M, Ahn C K, Karimi H. R, Shi P. Stability of Markovian jump generalized neuralnetworks with interval time-varying delays[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017,28(8): 1840-1850.
  13. [13] Chen B., Niu Y., Zou Y. Adaptive sliding mode control for stochastic Markovian jumping systems withactuator degradation[J]. Automatica, 2013, 49(6): 1748-1754.
  14. [14] Sun M, Lam J. Model reduction of discrete Markovian jump systems with time-weighted H2 performance[J].International Journal of Robust and Nonlinear Control, 2016, 26(3): 401-425.
  15. [15] Li F., Shi P., Wu L., Basin M, Lim C. Quantized control design for cognitive radio networks modeled asnonlinear semi-Markovian jump systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2330-2340.
  16. [16] Wang J., Zhang Q., Bai F. Robust control of discrete-time singular Markovian jump systems with partlyunknown transition probabilities by static output feedback[J]. International Journal of Control, Automation andSystems, 2015, 13(6): 1313-1325.
  17. [17] Huang D., Nguang S. K. State feedback control of uncertain networked control systems with random time(DOI: 10.2316/J.2019.201-3037)delays[J]. IEEE Transactions on Automatic Control, 2008, 53(3): 829-834.
  18. [18] Amato F., De Tommasi G, Pironti A. Necessary and sufficient conditions for finite-time stability of impulsivedynamical linear systems[J]. Automatica, 2013, 49(8): 2546-2550.
  19. [19] Yan Z., Zhang G., Zhang W. Finite-time stability and stabilization of linear Itô stochastic systems with stateand control-dependent noise[J]. Asian Journal of Control, 2013, 15(1): 270-281.
  20. [20] Yan Z., Zhang W., Zhang G. Finite-time stability and stabilization of Itô stochastic systems with Markovianswitching: mode-dependent parameter approach[J]. IEEE Transactions on Automatic Control, 2015, 60(9):2428-2433.
  21. [21] Amato F., Cosentino C., De Tommasi G, Pironti A. New conditions for the finite-time stability of stochasticlinear time-varying systems[J]. Control Conference (ECC), 2015 European. IEEE, 2015: 1219-1224.
  22. [22] Yin J., Khoo S. Continuous finite-time state feedback stabilizers for some nonlinear stochastic systems[J].International Journal of Robust and Nonlinear Control, 2015, 25(11): 1581-1600.

Important Links:

Go Back