BACKSTEPPING INTEGRAL SLIDING MODE CONTROL FOR ENERGY CAPTURE OPTIMIZATION OF WIND TURBINE SYSTEM

Fatima Ez-zahra Lamzouri, El-Mahjoub Boufounas, and Aumeur El Amrani

References

  1. [1] G. M. J. Herbert, S. Iniyan, E. Sreevalsan, & S. Rajapandian, A review of wind energy technologies,Renewable & Sustainable Energy Reviews, 11(6), 2007, 1117-1145.
  2. [2] D. Jena, & S. Rajendran, A review of estimation of effective wind speed based control of windturbines, Renewable & Sustainable Energy Reviews, 43, 2015, 1046-1062.
  3. [3] H.J. Asl, & J. Yoon, Power capture optimization of variable-speed wind turbines using an outputfeedback controller, Renewable Energy, 86, 2016, 517-525.
  4. [4] I. Poultangari, R. Shahnazi, & M. Sheikhan, RBF neural network based PI pitch controller for a classof 5-MW wind turbines using particle swarm optimization algorithm, ISA Transactions, 51, 2012,641-648.
  5. [5] B. Boukhezzar, L. Lupu, H. Siguerdidjane, & M. Hand, Multivariable control strategy for variablespeed, variable pitch wind turbines, Renewable Energy, 32(8), 2007, 1273-1287.
  6. [6] T. Hawkins, WN. White, G. Hu, & FD Sahneh, Wind turbine power capture control with robustestimation, In: Proc. DSCC. 2, 2010, 895-902.
  7. [7] B. Boukhezzar, & H. Siguerdidjane, Comparison between linear and nonlinear control strategies forvariable speed wind turbines, Control Engineering Practice, 18, 2010, 1357-1368.
  8. [8] E. B. Muhando, T. Senjyu, N. Urasaki, A. Yona, H. Kinjo, & T. Funabashi, Gain scheduling control ofvariable speed wtg under widely varying turbulence loading, Renewable Energy, 32(14), 2007,2407-2423.
  9. [9] X-J. Yao, H-C. Guo, & Y. Li, Lpv h-infinity controller design for variable-pitch variable-speed windturbine, in: Power Electronics and Motion Control Conference, IPEMC '09, 2009, 2222-2227.
  10. [10] A. McIver, D.G. Holmes, & P. Freere, Optimal control of a variable speed wind turbine underdynamic wind conditions, in: Industry Applications Conference, 3, 1996, 1692-1698.
  11. [11] L.J. Fingersh, & K. Johnson, Baseline results and future plans for the NREL controls advancedresearch turbine, in: 23rd ASME Wind Energy Symposium, 2004, 87-93.
  12. [12] K. Pierce, Control method for improved energy capture below rated power, in: 3rd ASME/JSMEJoint Fluids Engineering Conference, 1999, 1041-1048.
  13. [13] S. Bououden, M. Chadli, S. Filali, & A. El Hajjaji, Fuzzy model based multivariable predictivecontrol of a variable speed wind turbine: LMI approach, Renewable Energy, 37, 2012, 434-439.
  14. [14] E. Kamal, A. Aitouche, R. Ghorbani, & M. Bayart, Robust fuzzy logic control of wind energyconversion systems with unknown inputs, Int. J. of Power and Energy Systems, 32, 2012, 71-81.
  15. [15] M.M. Algazar, H. AL-monier, H.A. EL-halim, & M.E.E. Salem, Maximum power point trackingusing fuzzy logic control, Int. J. of Electrical Power and Energy Systems, 39, 2012, 21-28.
  16. [16] E. Boufounas, J. Boumhidi, N. Farhane, & I. Boumhidi, Neural network sliding mode controller for avariable speed wind turbine, Control and Intelligent Systems, 41(4), 2013, 251-258.
  17. [17] W. Liu, Q. Wang, & Q. Guo, Automatic radar waveform recognition based on neural network,Control and Intelligent Systems, 46, 2018, DOI: 10.2316/Journal.201.2018.2.201-2978.
  18. [18] H. M. Hasanien, & S. M. Muyeen, Speed control of grid-connected switched reluctance generatordriven by variable speed wind turbine using adaptive neural network controller, Electric PowerSystems Research, 84, 2012, 206-213.
  19. [19] M. A. Ayoub, & L. Tai, Intelligent control of a large variable speed wind turbine, J Sol Energy Eng.,134, 2012, 011001-1.
  20. [20] A. Frih, Z. Chalh, & M. Mrabti, Wind turbine: bond graph modelling and sliding mode control,Control and Intelligent Systems, 46, 2018, DOI: 10.2316/Journal.201.2018.1.201-2803.
  21. [21] S. Abdeddaim, & A. Betka, Optimal tracking and robust power control of the DFIG wind turbine, Int.J. of Electrical Power and Energy Systems, 49, 2013, 234-242.
  22. [22] V. Utkin, J. Guldner, & J. Shi, Sliding Mode Control in Electromechanical System, (London: Taylor& Francis, 1999).
  23. [23] J. J. Slotine, Sliding Controller Design for Non-linear Systems, International Journal of Control, 401984, 421-434.
  24. [24] V. Utkin, & J. Shi, Integral sliding mode in systems operating under uncertainty conditions, Digests35th Annual Conf. IEEE on Decision and Control, 1996, 4591-4596.
  25. [25] S. Rajendran, & D. Jena, Validation of an integral sliding mode control for optimal control of a threeblade variable speed variable pitch wind turbine, Electrical Power and Energy Systems, 69, 2015,421–429.
  26. [26] R. Saravanakumar, & J. Debashisha, Control of Variable Speed Variable Pitch Wind Turbine atAbove and Below Rated Wind Speed, Journal of Wind Energy, 2014, Article ID 709128:1-14.
  27. [27] R. Saravanakumar, J. Debashisha, Backstepping sliding mode control of a variable speed windturbine for power optimization, J. Mod. Power Syst. Clean Energy, DOI 10.1007/s40565-015-0106-2.
  28. [28] C.M. Hong, F.S. Cheng, & C.H. Chen, Optimal control for variable-speed wind generation systemsusing general regression neural network, Int. J. of Electrical Power and Energy Systems, 60, 2014,14-23.
  29. [29] C.M. Hong, & C.H. Chen, Intelligent control of a grid-connected wind-photovoltaic hybrid powerSystems, Int. J. of Electrical Power and Energy Systems, 55, 2014, 554-561.
  30. [30] R.C. Eberhart, & J. Kennedy, A new optimizer using particle swarm theory, Proceedings of the SixthInternational Symposium on Micro-Machine and Human Science, 1995, 39-43.
  31. [31] C. JinXing, Support vector regression based on optimal training subset and adaptive particle swarmoptimization algorithm, Applied Soft Computing, 13, 2013, 3473-3481.
  32. [32] J. Mérida, L.T. Aguilar, & J. Davila, Analysis and synthesis of sliding mode control for large scalevariable speed wind turbine for power optimization, Renew Energy, 71, 2014, 715–728.
  33. [33] E. Boufounas, & A. El Amrani, Optimal multivariable control for wind energy conversion systemsusing particle swarm optimization technique, Control and Intelligent Systems, 45, 2017, DOI:10.2316/Journal.201.2017.4.201-2865.
  34. [34] J.J. Slotine, & W. Li, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, New Jersey,1991.
  35. [35] H. Zhang, L. Chen, Y. Qu, G. Zhao, & Z. Guo, Support Vector Regression Based on Grid-SearchMethod for Short-Term Wind Power Forecasting, Journal of Applied Mathematics, 2014, ID 835791(2014) 1-11.
  36. [36] Z. Hongyu, G. Yang, X. Aoran, X. Zhanguo, C. Junchao, & Z. Ming-ju, Application of GR NeuralNetwork in Ultra-Short Term Wind Speed Forecast, Journal of Modeling and Optimization, 8, 2016,28-35.
  37. [37] E. E. Elattar, Prediction of wind power based on evolutionary optimized local general regressionneural network, IET Gener Transm Distrib., 8, 2014, 916-923.
  38. [38] D. F. Specht, A general regression neural network, IEEE Trans Neural Network, 2, 1991, 568-576.
  39. [39] S. R. Inkollu, & V. R. Kota, Optimal setting of FACTS devices for voltage stability improvementusing PSO adaptive GSA hybrid algorithm, Engineering Science and Technology, an InternationalJournal, 19, 2016, 1166-1176.
  40. [40] K. Shunmugesh, & K. Panneerselvam, Machinability study of Carbon Fiber Reinforced Polymer inthe longitudinal and transverse direction and optimization of process parameters using PSO–GSA,Engineering Science and Technology, an International Journal, 19, 2016, 1552-1563.
  41. [41] L. J. Fingersh, & K. Johnson, Controls advanced research turbine (CART) commissioning andbaseline data collection, NREL report TP-500-32879, National Renewable Energy Laboratory,Golden, Co; 2002.

Important Links:

Go Back