MOTION CHARACTERISTIC EVALUATION OF AN AMPHIBIOUS SPHERICAL ROBOT

Yanlin He, Shuxiang Guo, Liwei Shi, Huiming Xing, Zhan Chen, Shuxiang Su

References

  1. [1] S. Zhang, X. Liang, L. Xu, M. Xu, Initial development of a novel amphibious robot with transformablefin-leg composite propulsion mechanisms, Journal of Bionic Engineering, 10 (4), 2013, 434–445.
  2. [2] AS. Boxerbaum, P. Werk, RD. Quinn, R. Vaidyanathan, Design of an autonomous amphibious robotfor surf zone operation: Part I-Mechanical design for multi-mode mobility, Proc. IEEE Conf. on AdvancedIntelligent Mechatronics, Monterey, CA, 2005, 459–1464.
  3. [3] Y. He, L. Shi, S. Guo, S. Pan, Z. Wang, Preliminary mechanical analysis of an improved amphibiousspherical father robot, Microsystem Technologies, 22 (8), 2015, 1-16.
  4. [4] Y. He, L. Shi, S. Guo, S. Pan, Z, Wang, 3D Printing Technology-based an Amphibious SphericalUnderwater Robot, Proc. 2014 IEEE Conf. on Mechatronics and Automation, Tianjin, 2014, 1382-1387.
  5. [5] S. Pan, S. Guo, L. Shi, Y. He, Z, Wang, Q, Huang, A spherical robot based on all programmable SoCand 3-D printing, Proc. 2014 IEEE Conf. on Mechatronics and Automation, Tianjin, 2014, 150-155.
  6. [6] S. Guo, Y. He, L. Shi, S. Pan, etc, Modeling and Experimental Evaluation of an Improved AmphibiousRobot with Compact Structure, Robotics and Computer Integrated Manufacturing, 51, 2018, 37-52,
  7. [7] S. Guo, Y. He, L. Shi, S. Pan, R. Xiao, P. Guo, Modal and fatigue analysis of critical components of anamphibious spherical robot, Microsystem Technologies, 2016, 1-15.
  8. [8] M. Li, S. Guo, H. Hirata, H. Ishihara, Design and performance evaluation ofan amphibious spherical robot, Robotics and Autonomous Systems, 64, 2015, 21-34.
  9. [9] L. Shi, S. Guo, S. Mao, C. Yue, M. Li, K. Asaka, Development ofan Amphibious Turtle-Inspired Spherical Mother Robot, Journal of Bionic Engineering, 10 (4), 2013,446-455.
  10. [10] S. Guo, L. Shi, S. Mao, M. Li, Design and kinematic analysis of an amphibious spherical robot,”Proc. 2012 IEEE Conf. on Mechatronics and Automation, Tianjin, Chengdu, 2012, 2214 - 2219.
  11. [11] S. Guo, J. Du, X. Ye, R. Yan, H. Gao, The computational design of a water jet Propulsion sphericalunderwater vehicle, Proc. 2011 IEEE Conf. on Mechatronics and Automation, Tianjin, 2014, Beijing,2011, 2375-2379.
  12. [12] L. Shi, Y. He, S. Guo, Skating Motion Analysis of the Amphibious Quadruped Mother Robot, Proc.2013 IEEE Conf. on Mechatronics and Automation, Takamatsu, 2013, 1749-1754.
  13. [13] C. Yue, S. Guo, L. Shi, J. Du, Characteristics evaluation of the vertical motion of a sphericalunderwater robot, Proc. 2014 IEEE Conf. on Robotics and Biomimetics, Guangzhou, 2012, 759-764.
  14. [14] Y. Li, S. Guo, C. Yue, Preliminary Concept and Kinematics Simulation of a Novel SphericalUnderwater Robot, Proc. 2014 IEEE Conf. on Mechatronics and Automation, Tianjin, 2014, 1907-1912.
  15. [15] S. Guo, M. Li, C. Yue, Performance evaluation on land of an amphibious spherical mother robot indifferent terrains, Proc. 2013 IEEE Conf. on Mechatronics and Automation, Takamatsu, 2013,1173–1178.
  16. [16] D. Papadopoulos, M. Buehler, Stable running in a quadruped robot with compliant legs, Proc. 2013IEEE Conf. on Robotics&Automation, San Francisco, 2000, 444-449.
  17. [17] Z. G. Zhang, T. Masuda, H. Kimura, K. Takase, Towards Realization of Adaptive Running of aQuadruped Robot Using Delayed Feedback Control, Proc. 2013 IEEE Conf. on Robotics and Automation,Roma, 2007, 4325-4330.
  18. [18] X. Lin, S. Guo, Development of a Spherical Underwater Robot Equipped with Multiple VectoredWater-Jet-Based Thrusters, Journal of Intelligent and Robotic Systems, 67 (3-4), 2012, 307-321.
  19. [19] S. Pan, L. Shi, S. Guo, P. Guo, Y. He, R, Xiao, A Low-power SoC-based Moving Target DetectionSystem for Amphibious Spherical Robots, Proc. 2015 IEEE Conf. on Mechatronics and Automation,Beijing, 2015, 1116-1121.
  20. [20] Y. He, S. Guo, L. Shi, S. Pan, P. Guo, Dynamic gait analysis of a multi-functional robot with bionicspringy legs, Proc. 2016 IEEE Conf. on Mechatronics and Automation Proceedings of 2016 IEEEInternational Conference on Mechatronics and Automation, Harbin, 2016, 689-694.
  21. [21] C.P. Santos, V. Matos, Gait transition and modulation in a quadruped robot: A brainstem-likemodulation approach, Robotics and Autonomous Systems, 59, 2011, 620-634.
  22. [22] L. Bi, J. Guo, S. Guo, Virtual Prototyping Technology-based Dynamics Analysis for an AmphibiousSpherical Robot, Proc. 2015 IEEE Conf. on Information and Automation, Lijiang,2015, 2563-2568.
  23. [23] A. Delibasi, E. Zergeroglu, I. B. Küçükdemiral, G. Cansever, Adaptive Self-Tuning Control of RobotManipulators with Periodic Disturbance Estimation, International Journal of Robotics & Automation,25(1), 2010, 48-56.
  24. [24] Z. Lu, Z. Ge, W. Ding, Co-simulating Quadruped Weeding robot Using ADAMS and MATLAB,Mechanical Science and Technology for Aerospace Engineering, 35(3), 2016, 375-380.
  25. [25] C. Liao, J. Zhang, W. Chen, M. Lv, Union Simulation on Lower Limbs Rehabilitation Robot Basedon MATLAB and ADAMS, Proc. 2013 IEEE Conf. on Industrial Electronics and Applications, NewZealand, 2015, 557-562.
  26. [26] J. Wang, Y. Zhao, Y. Zhu, Z. Ma, Coordinated Simulation of Trot Gait for Quadruped robot Based onADAMS and MATLAB, Machine Tool & Hydraulics, 43 (3), 2015, 57-59.
  27. [27] D. Pan, F. Gao, Y. Miao, R. Cao, Co-simulation research of a novel exoskeleton-human robot systemon humanoid gaits with fuzzy-PID/PID algorithms, Advances in Engineering Software, 79, 2015, 36-46.
  28. [28] Y.Zhu, Jin B. Compliance control of a legged robot based on improved adaptive control: Method andexperiments. International Journal of Robotics & Automation, 31(5), 2016, 366-373.
  29. [29] Subramanian S, George T, Thondiyath A. Real-time obstacle avoidance for an underactuated flat-fishtype autonomous underwater vehicle in 3D space[J]. Acta Press, 2014, 29(4).
  30. [30] M. Gouasmi1, M. Ouali1, B. Fernini1, M. Meghatria1, Kinematic Modelling and Simulation of a 2-RRobot Using SolidWorks and Verification by MATLAB/Simulink, International Journal of AdvancedRobotic Systems, 9 (245), 2012, 1-13.
  31. [31] Y. He, S. Guo, L. Shi, S. Pan, P. Guo, Dynamic Gait Analysis of a Multi-functional Robot withBionic Springy Legs, Proc. 2016 IEEE Conf. on Mechatronics and Automation, Harbin, 2016, 689-694.
  32. [32] L. Li, X. Wang, D. Xu, T.Min, An accurate path planning algorithm based on triangular meshes inrobotic fibre placement, International Journal of Robotics & Automation, 2017, 32(1).
  33. [33] X. Lin, S. Guo, C. Yue, J. Du, 3D modeling of a vectored water jet based multi-propeller propulsionsystem for a spherical underwater robot, International Journal of Advanced Robotic Systems,10 (80),2013, 1-8.
  34. [34] C. Yue, S. Guo, M. Li, ANSYS FLUENT-based Modeling and Fluid dynamic Analysis for aSpherical Underwater Robot, Proc. 2013 IEEE Conf. on Mechatronics and Automation, Takamatsu, 2013,1577-1581.
  35. [35] Y. He, L. Shi, S. Guo, P. Guo, R. Xiao, Numerical Simulation and Hydrodynamic Analysis of anAmphibious Spherical Robot, Proc. 2015 IEEE Conf. on Mechatronics and Automation, Beijing, 2015,848-853.
  36. [36] S. Sang, J. Zhao, H. Wu, S. Chen, Q. An, Modeling and Simulation of a Spherical Mobile Robot,Computer Science & Information Systems, 7 (1), 2010, 51-62.
  37. [37] G. Liu, M. Wang, B. He, Cooperative Simulation Based on Adams and Matlab/Simulink forAutonomous Underwater Vehicle, Journal of mechanical engineering, 45 (10), 2009, 22-29.
  38. [38] L. Shi, R. Xiao, S. Guo, P. Guo, S. Pan, Y. He, An attitude estimation system for amphibiousspherical robots, Proc. 2015 IEEE Conf. on Mechatronics and Automation, Beijing, 2015, 2076-853.
  39. [39] C. J. Lin, A GPU-Based Evolution Algorithm for Motion Planning of a Redundant Robot,International Journal of Robotics & Automation, 2(2), 2017.

Important Links:

Go Back